結果

問題 No.2427 Tree Distance Two
ユーザー jabeejabee
提出日時 2023-08-18 21:54:11
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 599 ms / 2,000 ms
コード長 4,918 bytes
コンパイル時間 6,343 ms
コンパイル使用メモリ 272,484 KB
実行使用メモリ 51,316 KB
最終ジャッジ日時 2024-11-28 06:52:10
合計ジャッジ時間 15,895 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
18,944 KB
testcase_01 AC 30 ms
18,944 KB
testcase_02 AC 29 ms
18,944 KB
testcase_03 AC 599 ms
45,632 KB
testcase_04 AC 28 ms
18,944 KB
testcase_05 AC 579 ms
45,508 KB
testcase_06 AC 30 ms
18,944 KB
testcase_07 AC 531 ms
50,428 KB
testcase_08 AC 551 ms
51,316 KB
testcase_09 AC 511 ms
49,436 KB
testcase_10 AC 532 ms
48,912 KB
testcase_11 AC 543 ms
50,204 KB
testcase_12 AC 537 ms
50,020 KB
testcase_13 AC 575 ms
48,136 KB
testcase_14 AC 463 ms
44,976 KB
testcase_15 AC 29 ms
18,944 KB
testcase_16 AC 29 ms
18,944 KB
testcase_17 AC 29 ms
18,944 KB
testcase_18 AC 29 ms
18,944 KB
testcase_19 AC 30 ms
18,944 KB
testcase_20 AC 40 ms
19,712 KB
testcase_21 AC 42 ms
19,968 KB
testcase_22 AC 31 ms
19,200 KB
testcase_23 AC 30 ms
19,072 KB
testcase_24 AC 39 ms
19,712 KB
testcase_25 AC 154 ms
25,976 KB
testcase_26 AC 339 ms
35,472 KB
testcase_27 AC 243 ms
30,876 KB
testcase_28 AC 522 ms
43,684 KB
testcase_29 AC 468 ms
40,764 KB
testcase_30 AC 340 ms
35,176 KB
testcase_31 AC 227 ms
29,452 KB
testcase_32 AC 338 ms
34,828 KB
testcase_33 AC 296 ms
33,088 KB
testcase_34 AC 104 ms
23,516 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include<bits/stdc++.h>
#include <math.h>
#include <algorithm>
#include <iostream>
#include <vector>
#include <atcoder/all>
#include <atcoder/dsu>
#include <atcoder/segtree>
#include <atcoder/lazysegtree>
#include <atcoder/modint>
#include <atcoder/scc>
#include <chrono>
#include <random>
#include <cassert>
#ifndef templete
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
 
//#include<boost/multiprecision/cpp_int.hpp>
//using namespace boost::multiprecision;
using namespace std;
using namespace atcoder;
//using atmint = modint998244353;
using atmint = modint;
using Graph = vector<vector<int>>;
using P = pair<long long,long long>;
//#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
 
//---------------------------------------------------------------------------------------------------
 
template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
template<typename T, int FAC_MAX> struct Comb { vector<T> fac, ifac;
    Comb(){fac.resize(FAC_MAX,1);ifac.resize(FAC_MAX,1);rep(i,1,FAC_MAX)fac[i]=fac[i-1]*i;
        ifac[FAC_MAX-1]=T(1)/fac[FAC_MAX-1];rrep(i,FAC_MAX-2,1)ifac[i]=ifac[i+1]*T(i+1);}
    T aPb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b]; }
    T aCb(int a, int b) { if (b < 0 || a < b) return T(0); return fac[a] * ifac[a - b] * ifac[b]; }
    T nHk(int n, int k) { if (n == 0 && k == 0) return T(1); if (n <= 0 || k < 0) return 0;
        return aCb(n + k - 1, k); } // nHk = (n+k-1)Ck : n is separator
    T pairCombination(int n) {if(n%2==1)return T(0);return fac[n]*ifac[n/2]/(T(2)^(n/2));}
    // combination of paris for n com.aCb(h+w-2,h-1);
}; 
//typedef ModInt<1000000007> mint;
typedef ModInt<998244353> mint; 
//typedef ModInt<1000000000> mint; 
Comb<mint, 2010101> com;
//vector dp(n+1,vector(n+1,vector<ll>(n+1,0)));
//vector dp(n+1,vector<ll>(n+1,0));
  std::random_device seed_gen;
  std::mt19937 engine(seed_gen());
string ye = "Yes"; string no = "No"; string draw = "Draw";
 
#endif // templete
//---------------------------------------------------------------------------------------------------
void _main() {
  ll n;
  cin >> n;
  Graph g(n);
  rep(i,0,n-1){
    ll u,v;
    cin >> u >> v;
    u--;
    v--;
    g[u].push_back(v);
    g[v].push_back(u);
  }
  vector<ll>c_cnt(n,0);
  vector<ll>d(n,-1);
  queue<P>q;
  q.push({0,0});
  d[0] = 0;
  vector<ll>v;
  while(q.size()){
    ll from = q.front().first;
    ll dep = q.front().second;
    q.pop();
    v.push_back(from);
    ll c = 0;
    for(auto to:g[from]){
        if(d[to] != -1)continue;
        c++;
        d[to] = dep + 1;
        q.push({to,dep+1});
    }
    c_cnt[from] = c;
  }
  vector<ll>ans(n,-1);
  rep(i,0,n){
    ll from = v[i];
    ll c = 0;
    for(auto to:g[from]){
        if(ans[to] != -1){
            c += c_cnt[to] - 1;
            continue;
        }else c += c_cnt[to];
    }
    if(d[from] >= 2)c++;
    ans[from] = c;
  }
  rep(i,0,n)cout << ans[i] << endl;
}
0