結果
| 問題 |
No.36 素数が嫌い!
|
| コンテスト | |
| ユーザー |
Min_25
|
| 提出日時 | 2016-05-06 11:56:44 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 5,000 ms |
| コード長 | 5,597 bytes |
| コンパイル時間 | 1,169 ms |
| コンパイル使用メモリ | 99,336 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-06-27 00:45:15 |
| 合計ジャッジ時間 | 2,163 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 26 |
ソースコード
#include <cstdio>
#include <cassert>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <utility>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <map>
#define _fetch(_1, _2, _3, _4, name, ...) name
#define rep2(i, n) rep3(i, 0, n)
#define rep3(i, a, b) rep4(i, a, b, 1)
#define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c))
#define rep(...) _fetch(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__)
#define getchar getchar_unlocked
#define putchar putchar_unlocked
using namespace std;
using i64 = long long;
using u8 = unsigned char;
using u32 = unsigned;
using u64 = unsigned long long;
using f64 = double;
using f80 = long double;
using u128 = __uint128_t;
struct Mod64 {
Mod64() : n_(0) {}
Mod64(u64 n) : n_(init(n)) {}
static void init_mod(u64 m) { mod = m, inv = -mul_inv(m), r2 = u128(-m) * (-m) % m; }
static u64 mul_inv(u64 n) {
u64 x = n;
rep(_, 5) x *= 2 - n * x;
return x;
}
static u64 reduce(u128 w) {
u64 x = u64(w) * inv;
u64 y = (u128(x) * mod + w) >> 64;
return (y >= mod) ? y - mod : y;
}
static u64 init(u64 n) { return reduce(u128(n) * r2); }
static u64 ilog2(u64 n) { return (n == 0) ? 0 : (63 - __builtin_clzll(n)); }
Mod64& operator += (Mod64 rhs) { if ((n_ += rhs.n_) >= mod) n_ -= mod; return *this; }
Mod64& operator -= (Mod64 rhs) { if (i64(n_ -= rhs.n_) < 0) n_ += mod; return *this; }
Mod64& operator *= (Mod64 rhs) { n_ = reduce(u128(n_) * rhs.n_); return *this; }
bool operator == (Mod64 rhs) { return n_ == rhs.n_; }
bool operator != (Mod64 rhs) { return !(*this == rhs); }
Mod64 operator + (Mod64 rhs) { return Mod64(*this) += rhs; }
Mod64 operator - (Mod64 rhs) { return Mod64(*this) -= rhs; }
Mod64 operator * (Mod64 rhs) { return Mod64(*this) *= rhs; }
Mod64 operator - () { return (n_ == 0) ? *this : Mod64() - *this; };
Mod64 pow(u64 e) {
if (e == 0) return Mod64(1);
Mod64 ret = Mod64(*this);
for (u64 mask = (u64(1) << ilog2(e)) >> 1; mask > 0; mask >>= 1) {
ret *= ret;
if (e & mask) ret *= *this;
}
return ret;
}
u64 val() { return reduce(n_); }
friend ostream& operator << (ostream& os, Mod64& m) { return os << m.val(); }
u64 n_;
static u64 mod, inv, r2;
};
u64 Mod64::mod = 0;
u64 Mod64::inv = 0;
u64 Mod64::r2 = 0;
namespace factor {
using m64 = Mod64;
struct ExactDiv {
ExactDiv() {}
ExactDiv(u64 n) : n(n), i(m64::mul_inv(n)), t(u64(-1) / n) {}
friend u64 operator / (u64 n, ExactDiv d) { return n * d.i; };
bool divide(u64 n) { return n / *this <= this->t; }
u64 n, i, t;
};
vector<ExactDiv> primes;
void init(u32 n) {
u32 sqrt_n = sqrt(n);
vector<u8> isprime(n + 1, 1);
rep(i, 2, sqrt_n + 1) if (isprime[i]) rep(j, i * i, n + 1, i) isprime[j] = 0;
primes.clear();
rep(i, 2, n + 1) if (isprime[i]) primes.push_back(ExactDiv(i));
}
u64 gcd(u64 a, u64 b) {
while (b) { u64 t = a % b; a = b; b = t; }
return a;
}
u64 brent(u64 n, m64 c) {
// n must be composite and odd.
m64::init_mod(n);
const u64 s = 256;
const m64 one = m64(1);
auto f = [&](m64 x) { return x * x + c; };
m64 y = one;
for (u64 l = 1; ; l <<= 1) {
auto x = y;
rep(_, l) y = f(y);
m64 p = one;
rep(k, 0, l, s) {
rep(_, min(s, l - k)) y = f(y), p *= y - x;
u64 g = gcd(n, p.n_);
if (g == 1) continue;
if (g == n) for (g = 1; g == 1; ) y = f(y), g = gcd(n, (y - x).n_);
return g;
}
}
}
bool miller_rabin(u64 n) {
if (!(n & 1)) return n == 2;
if (n <= 8) return true;
m64::init_mod(n);
u64 d = n - 1;
u64 s = __builtin_ctzll(d);
d >>= s;
m64 one = m64(1);
auto composite = [&](m64 b) {
b = b.pow(d);
if (b == one || b == -one) return false;
rep(_, s - 1) {
b *= b; if (b == -one) return false;
}
return true;
};
u64 bases[] = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
rep(i, 7) {
m64 b = m64(bases[i] % n);
if (b == 0) return true;
if (composite(b)) return false;
}
return true;
}
u64 ctz(u64 n) {
return __builtin_ctzll(n);
}
u64 square(u64 n) {
return n * n;
}
using P = pair<u64, u32>;
vector<P> factors(u64 n) {
assert(n < (u64(1) << 63));
auto ret = vector<P>();
if (!(n & 1)) {
u32 e = ctz(n);
ret.emplace_back(2, e);
n >>= e;
}
u64 lim = square(primes[primes.size()-1].n);
rep(pi, 1, primes.size()) {
auto p = primes[pi];
if (square(p.n) > n) break;
if (p.divide(n)) {
u32 e = 1; n = n / p;
while (p.divide(n)) n = n / p, e++;
ret.emplace_back(p.n, e);
}
}
u32 s = ret.size();
while (n > lim && !miller_rabin(n)) {
for (u64 c = 1; ; ++c) {
u64 p = brent(n, c);
if (!miller_rabin(p)) continue;
u32 e = 1; n /= p;
while (n % p == 0) {
n /= p; e += 1;
}
ret.emplace_back(p, e);
break;
}
}
if (n > 1) ret.emplace_back(n, 1);
if (ret.size() - s >= 2) sort(ret.begin() + s, ret.end());
return ret;
}
}
void solve() {
using namespace factor;
init(1000);
u64 n;
while (~scanf("%llu", &n)) {
u64 e = 0;
for (auto p : factors(n)) {
e += p.second;
}
puts(e >= 3 ? "YES" : "NO");
}
}
int main() {
// clock_t beg = clock();
solve();
// clock_t end = clock();
// fprintf(stderr, "%.3f sec.\n", double(end - beg) / CLOCKS_PER_SEC);
return 0;
}
Min_25