結果
問題 | No.2435 Order All Company |
ユーザー | tokusakurai |
提出日時 | 2023-08-18 22:28:26 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 28 ms / 2,000 ms |
コード長 | 11,715 bytes |
コンパイル時間 | 3,175 ms |
コンパイル使用メモリ | 215,124 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-28 08:17:13 |
合計ジャッジ時間 | 5,162 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 28 ms
5,248 KB |
testcase_06 | AC | 28 ms
5,248 KB |
testcase_07 | AC | 16 ms
5,248 KB |
testcase_08 | AC | 28 ms
5,248 KB |
testcase_09 | AC | 28 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 24 ms
5,248 KB |
testcase_15 | AC | 25 ms
5,248 KB |
testcase_16 | AC | 19 ms
5,248 KB |
testcase_17 | AC | 28 ms
5,248 KB |
testcase_18 | AC | 16 ms
5,248 KB |
testcase_19 | AC | 15 ms
5,248 KB |
testcase_20 | AC | 16 ms
5,248 KB |
testcase_21 | AC | 17 ms
5,248 KB |
testcase_22 | AC | 24 ms
5,248 KB |
testcase_23 | AC | 11 ms
5,248 KB |
testcase_24 | AC | 17 ms
5,248 KB |
testcase_25 | AC | 24 ms
5,248 KB |
testcase_26 | AC | 19 ms
5,248 KB |
testcase_27 | AC | 23 ms
5,248 KB |
testcase_28 | AC | 17 ms
5,248 KB |
testcase_29 | AC | 20 ms
5,248 KB |
testcase_30 | AC | 18 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 3 ms
5,248 KB |
testcase_35 | AC | 3 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<MOD>; template <typename T> struct Matrix { vector<vector<T>> A; int n, m; Matrix(int n, int m) : A(n, vector<T>(m, 0)), n(n), m(m) {} inline const vector<T> &operator[](int k) const { return A[k]; } inline vector<T> &operator[](int k) { return A[k]; } static Matrix I(int l) { Matrix ret(l, l); for (int i = 0; i < l; i++) ret[i][i] = 1; return ret; } Matrix &operator*=(const Matrix &B) { assert(m == B.n); Matrix ret(n, B.m); for (int i = 0; i < n; i++) { for (int k = 0; k < m; k++) { for (int j = 0; j < B.m; j++) ret[i][j] += A[i][k] * B[k][j]; } } swap(A, ret.A); m = B.m; return *this; } Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; } Matrix pow(long long k) const { assert(n == m); Matrix now = *this, ret = I(n); for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } bool eq(const T &a, const T &b) const { return a == b; // return abs(a-b) <= EPS; } // 行基本変形を用いて簡約化を行い、(rank, det) の組を返す pair<int, T> row_reduction(vector<T> &b) { assert((int)b.size() == n); if (n == 0) return make_pair(0, m > 0 ? 0 : 1); int check = 0, rank = 0; T det = (n == m ? 1 : 0); for (int j = 0; j < m; j++) { int pivot = check; for (int i = check; i < n; i++) { if (A[i][j] != 0) pivot = i; // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら } if (check != pivot) det *= T(-1); swap(A[check], A[pivot]), swap(b[check], b[pivot]); if (eq(A[check][j], T(0))) { det = T(0); continue; } rank++; det *= A[check][j]; T r = T(1) / A[check][j]; for (int k = j + 1; k < m; k++) A[check][k] *= r; b[check] *= r; A[check][j] = T(1); for (int i = 0; i < n; i++) { if (i == check) continue; if (!eq(A[i][j], 0)) { for (int k = j + 1; k < m; k++) A[i][k] -= A[i][j] * A[check][k]; b[i] -= A[i][j] * b[check]; } A[i][j] = T(0); } if (++check == n) break; } return make_pair(rank, det); } pair<int, T> row_reduction() { vector<T> b(n, T(0)); return row_reduction(b); } // 行基本変形を行い、逆行列を求める pair<bool, Matrix> inverse() { if (n != m) return make_pair(false, Matrix(0, 0)); if (n == 0) return make_pair(true, Matrix(0, 0)); Matrix ret = I(n); for (int j = 0; j < n; j++) { int pivot = j; for (int i = j; i < n; i++) { if (A[i][j] != 0) pivot = i; // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら } swap(A[j], A[pivot]), swap(ret[j], ret[pivot]); if (eq(A[j][j], T(0))) return make_pair(false, Matrix(0, 0)); T r = T(1) / A[j][j]; for (int k = j + 1; k < n; k++) A[j][k] *= r; for (int k = 0; k < n; k++) ret[j][k] *= r; A[j][j] = T(1); for (int i = 0; i < n; i++) { if (i == j) continue; if (!eq(A[i][j], T(0))) { for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k]; for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k]; } A[i][j] = T(0); } } return make_pair(true, ret); } // Ax = b の解の 1 つと解空間の基底の組を返す vector<vector<T>> Gaussian_elimination(vector<T> b) { row_reduction(b); vector<vector<T>> ret; vector<int> p(n, m); vector<bool> is_zero(m, true); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (!eq(A[i][j], T(0))) { p[i] = j; break; } } if (p[i] < m) { is_zero[p[i]] = false; } else if (!eq(b[i], T(0))) { return {}; } } vector<T> x(m, T(0)); for (int i = 0; i < n; i++) { if (p[i] < m) x[p[i]] = b[i]; } ret.push_back(x); for (int j = 0; j < m; j++) { if (!is_zero[j]) continue; x[j] = T(1); for (int i = 0; i < n; i++) { if (p[i] < m) x[p[i]] = -A[i][j]; } ret.push_back(x); x[j] = T(0); } return ret; } }; using mat = Matrix<mint>; void solve() { int N, K; cin >> N >> K; vector<vector<pii>> ps(K); rep(i, K) { int L; cin >> L; rep(j, L) { int u, v; cin >> u >> v; u--, v--; ps[i].eb(u, v); } } auto calc = [&](int S) { mat A(N, N); rep(i, K) { if (flg(S, i)) { for (auto [u, v] : ps[i]) { A[u][u]++, A[u][v]--; A[v][u]--, A[v][v]++; } } } mat B(N - 1, N - 1); rep(i, N - 1) rep(j, N - 1) B[i][j] = A[i][j]; return B.row_reduction().second; }; mint ans = 0; rep(S, 1 << K) { // cout << calc(S) << '\n'; ans += calc(S) * ((K - pct(S)) & 1 ? -1 : 1); // } cout << ans << '\n'; } int main() { int T = 1; // cin >> T; while (T--) solve(); }