結果

問題 No.2430 Damage Zone
ユーザー k1suxuk1suxu
提出日時 2023-08-18 22:53:35
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 20 ms / 2,000 ms
コード長 6,168 bytes
コンパイル時間 3,392 ms
コンパイル使用メモリ 256,056 KB
実行使用メモリ 19,456 KB
最終ジャッジ日時 2024-11-28 09:14:01
合計ジャッジ時間 4,891 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 28
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")

#include <bits/stdc++.h>
using namespace std;

#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>

template<typename T>
void chmax(T &a, const T &b) {a = (a > b? a : b);}
template<typename T>
void chmin(T &a, const T &b) {a = (a < b? a : b);}

using ll = long long;
using ld = long double;
using ull = unsigned long long;

const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};

#define int long long

template<long long MOD>
struct Modular_Int {
    long long x;

    Modular_Int() = default;
    Modular_Int(long long x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {}

    long long val() const {
        return (x%MOD+MOD)%MOD;
    }
    long long get_mod() const {
        return MOD;
    }

    Modular_Int<MOD>& operator^=(long long d)  {
        Modular_Int<MOD> ret(1);
        long long nx = x;
        while(d) {
            if(d&1) ret *= nx;
            (nx *= nx) %= MOD;
            d >>= 1;
        }
        *this = ret;
        return *this;
    }
    Modular_Int<MOD> operator^(long long d) const {return Modular_Int<MOD>(*this) ^= d;}
    Modular_Int<MOD> pow(long long d) const {return Modular_Int<MOD>(*this) ^= d;}
    
    //use this basically
    Modular_Int<MOD> inv() const {
        return Modular_Int<MOD>(*this) ^ (MOD-2);
    }
    //only if the module number is not prime
    //Don't use. This is broken.
    // Modular_Int<MOD> inv() const {
    //     long long a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0;
    //     while(b) {
    //         long long t = a/b;
    //         a -= t*b, swap(a, b);
    //         u -= t*v, swap(u, v);
    //     }
    //     return Modular_Int<MOD>(u);
    // }

    Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) {
        if((x += other.x) >= MOD) x -= MOD;
        return *this;
    }
    Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) {
        if((x -= other.x) < 0) x += MOD;
        return *this;
    }
    Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) {
        long long z = x;
        z *= other.x;
        z %= MOD;
        x = z;
        if(x < 0) x += MOD;
        return *this;
    }
    Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) {
        return *this = *this * other.inv();
    }
    Modular_Int<MOD>& operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }
    Modular_Int<MOD>& operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }
    
    Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;}
    Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;}
    Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;}
    Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;}
    
    Modular_Int<MOD>& operator+=(const long long other) {Modular_Int<MOD> other_(other); *this += other_; return *this;}
    Modular_Int<MOD>& operator-=(const long long other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;}
    Modular_Int<MOD>& operator*=(const long long other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;}
    Modular_Int<MOD>& operator/=(const long long other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;}
    Modular_Int<MOD> operator+(const long long other) const {return Modular_Int<MOD>(*this) += other;}
    Modular_Int<MOD> operator-(const long long other) const {return Modular_Int<MOD>(*this) -= other;}
    Modular_Int<MOD> operator*(const long long other) const {return Modular_Int<MOD>(*this) *= other;}
    Modular_Int<MOD> operator/(const long long other) const {return Modular_Int<MOD>(*this) /= other;}

    bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();}
    bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();}
    bool operator==(const long long other) const {return (*this).val() == other;}
    bool operator!=(const long long other) const {return (*this).val() != other;}

    Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);}

    // friend constexpr istream& operator>>(istream& is, mint& x) noexcept {
    //     long long X;
    //     is >> X;
    //     x = X;
    //     return is;
    // }
    // friend constexpr ostream& operator<<(ostream& os, mint& x) {
    //     os << x.val();
    //     return os;
    // }
};

// const long long MOD_VAL = 1e9+7;
const long long MOD_VAL = 998244353;
using mint = Modular_Int<MOD_VAL>;

void solve() {
    int h, w, k;
    cin >> h >> w >> k;
    vector<string> s(h);
    FOR(h) cin >> s[i];
    vector<vector<vector<mint>>> dp(h, vector<vector<mint>>(w, vector<mint>(k+1)));
    dp[0][0][k] = 1;

    rep(i, h) rep(j, w) if(s[i][j] != '#') {
        if(i != 0) {
            if(s[i][j] == '.') {
                rep(health, k+1) dp[i][j][health] += dp[i-1][j][health];
            }else {
                rep(health, k) dp[i][j][health] += dp[i-1][j][health+1];
            }
        }
        if(j != 0) {
            if(s[i][j] == '.') {
                rep(health, k+1) dp[i][j][health] += dp[i][j-1][health];
            }else {
                rep(health, k) dp[i][j][health] += dp[i][j-1][health+1];
            }
        }
    }

    mint ans = 0;
    repi(health, 1, k+1) ans += dp[h-1][w-1][health];
    cout << ans.val() << endl;
}

signed main() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    solve();
    return 0;
}
0