結果
問題 | No.2436 Min Diff Distance |
ユーザー | fumofumofuni |
提出日時 | 2023-08-18 23:26:53 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 4,558 bytes |
コンパイル時間 | 2,499 ms |
コンパイル使用メモリ | 216,764 KB |
実行使用メモリ | 206,380 KB |
最終ジャッジ日時 | 2024-11-28 10:43:56 |
合計ジャッジ時間 | 45,979 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 81 ms
39,648 KB |
testcase_01 | AC | 81 ms
128,856 KB |
testcase_02 | AC | 78 ms
39,780 KB |
testcase_03 | TLE | - |
testcase_04 | TLE | - |
testcase_05 | TLE | - |
testcase_06 | TLE | - |
testcase_07 | TLE | - |
testcase_08 | TLE | - |
testcase_09 | AC | 88 ms
39,664 KB |
testcase_10 | AC | 88 ms
117,808 KB |
testcase_11 | AC | 885 ms
117,784 KB |
testcase_12 | AC | 889 ms
206,380 KB |
testcase_13 | TLE | - |
testcase_14 | AC | 357 ms
133,464 KB |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | TLE | - |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | AC | 1,114 ms
57,544 KB |
testcase_22 | AC | 390 ms
134,836 KB |
ソースコード
#include <bits/stdc++.h> using i32 = std::int32_t; using u32 = std::uint32_t; using i64 = std::int64_t; using u64 = std::uint64_t; using i128 = __int128_t; using u128 = __uint128_t; class Range { struct Iter { int itr; constexpr Iter(const int pos) noexcept : itr(pos) {} constexpr void operator++() noexcept { ++itr; } constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; } constexpr int operator*() const noexcept { return itr; } }; const Iter first, last; public: explicit constexpr Range(const int first, const int last) noexcept : first(first), last(std::max(first, last)) {} constexpr Iter begin() const noexcept { return first; } constexpr Iter end() const noexcept { return last; } }; constexpr Range rep(const int l, const int r) noexcept { return Range(l, r); } constexpr Range rep(const int n) noexcept { return Range(0, n); } constexpr int ceil_log2(const u64 x) { int e = 0; while (((u64)1 << e) < x) ++e; return e; } template <class G> class FenwickTree { using T = typename G::Type; int logn; std::vector<T> data; public: explicit FenwickTree(const int size = 0) { logn = ceil_log2(size + 1) - 1; data = std::vector<T>(size + 1, G::identity()); } int size() const { return data.size() - 1; } void add(int i, const T& x) { assert(0 <= i and i < size()); i += 1; while (i <= size()) { data[i] = G::operation(data[i], x); i += i & -i; } } T fold() const { return fold(0, size()); } T fold(int l, int r) const { assert(0 <= l and l <= r and r <= size()); T ret = G::identity(); while (l < r) { ret = G::operation(ret, data[r]); r -= r & -r; } while (r < l) { ret = G::operation(ret, G::inverse(data[l])); l -= l & -l; } return ret; } template <class F> int max_right(const F& f) const { assert(f(G::identity())); int i = 0; T sum = G::identity(); for (int k = (1 << logn); k > 0; k >>= 1) { if (i + k <= size() && f(G::operation(sum, data[i + k]))) { sum = G::operation(sum, data[i += k]); } } return i; } }; template <class T> struct SumGroup { using Type = T; static constexpr T identity() { return T(0); } static constexpr T operation(const T& l, const T& r) { return l + r; } static constexpr T inverse(const T& x) { return -x; } }; using std::array; using std::pair; using std::tuple; using std::vector; constexpr int MAX = 200000; constexpr int MAX2 = 2 * MAX + 1; constexpr int LOG = ceil_log2(MAX2); void main_() { int N; std::cin >> N; vector<vector<int>> pts(MAX2); int Q=N*2; vector<int> A(Q), B(Q), K(Q); for (int i = 0; i < N; ++i) { int x, y; std::cin >> x >> y; pts[x + y].push_back(x - y + MAX); A[i*2]=x+y;B[i*2]=x-y+MAX;K[i*2]=2; A[i*2+1]=x+y;B[i*2+1]=x-y+MAX;K[i*2+1]=N; } vector<int> ok(Q, 2 * MAX), ng(Q, 0), cnt(Q); vector<vector<tuple<int, int, int>>> add(MAX2), sub(MAX2); for (const int step : rep(LOG)) { std::fill(cnt.begin(), cnt.end(), 0); for (auto& v : add) v.clear(); for (auto& v : sub) v.clear(); for (const int i : rep(Q)) { const int k = (ok[i] + ng[i]) / 2; const int l = std::max(0, B[i] - k), r = std::min(2 * MAX, B[i] + k) + 1; sub[std::max(0, A[i] - k)].emplace_back(l, r, i); add[std::min(2 * MAX, A[i] + k)].emplace_back(l, r, i); } FenwickTree<SumGroup<int>> fen(MAX2); for (const int x : rep(0, MAX2)) { for (const auto& [l, r, q] : sub[x]) { cnt[q] -= fen.fold(l, r); } for (const int y : pts[x]) { fen.add(y, 1); } for (const auto& [l, r, q] : add[x]) { cnt[q] += fen.fold(l, r); } } for (const int i : rep(Q)) { const int md = (ok[i] + ng[i]) / 2; (cnt[i] >= K[i] ? ok[i] : ng[i]) = md; } } int ans=1e9; for(int i=0;i<N;i++){ ans=std::min(ans,ok[i*2+1]-ok[i*2]); //std::cout << ok[i*2+1]-ok[i*2] << '\n'; } std::cout << ans << '\n'; } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); main_(); return 0; }