結果

問題 No.2436 Min Diff Distance
ユーザー fumofumofuni
提出日時 2023-08-18 23:26:53
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
TLE  
実行時間 -
コード長 4,558 bytes
コンパイル時間 2,252 ms
コンパイル使用メモリ 208,904 KB
最終ジャッジ日時 2025-02-16 10:52:04
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 12 TLE * 11
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using i32 = std::int32_t;
using u32 = std::uint32_t;
using i64 = std::int64_t;
using u64 = std::uint64_t;
using i128 = __int128_t;
using u128 = __uint128_t;
class Range {
struct Iter {
int itr;
constexpr Iter(const int pos) noexcept : itr(pos) {}
constexpr void operator++() noexcept { ++itr; }
constexpr bool operator!=(const Iter& other) const noexcept { return itr != other.itr; }
constexpr int operator*() const noexcept { return itr; }
};
const Iter first, last;
public:
explicit constexpr Range(const int first, const int last) noexcept : first(first), last(std::max(first, last)) {}
constexpr Iter begin() const noexcept { return first; }
constexpr Iter end() const noexcept { return last; }
};
constexpr Range rep(const int l, const int r) noexcept { return Range(l, r); }
constexpr Range rep(const int n) noexcept { return Range(0, n); }
constexpr int ceil_log2(const u64 x) {
int e = 0;
while (((u64)1 << e) < x) ++e;
return e;
}
template <class G> class FenwickTree {
using T = typename G::Type;
int logn;
std::vector<T> data;
public:
explicit FenwickTree(const int size = 0) {
logn = ceil_log2(size + 1) - 1;
data = std::vector<T>(size + 1, G::identity());
}
int size() const { return data.size() - 1; }
void add(int i, const T& x) {
assert(0 <= i and i < size());
i += 1;
while (i <= size()) {
data[i] = G::operation(data[i], x);
i += i & -i;
}
}
T fold() const { return fold(0, size()); }
T fold(int l, int r) const {
assert(0 <= l and l <= r and r <= size());
T ret = G::identity();
while (l < r) {
ret = G::operation(ret, data[r]);
r -= r & -r;
}
while (r < l) {
ret = G::operation(ret, G::inverse(data[l]));
l -= l & -l;
}
return ret;
}
template <class F> int max_right(const F& f) const {
assert(f(G::identity()));
int i = 0;
T sum = G::identity();
for (int k = (1 << logn); k > 0; k >>= 1) {
if (i + k <= size() && f(G::operation(sum, data[i + k]))) {
sum = G::operation(sum, data[i += k]);
}
}
return i;
}
};
template <class T> struct SumGroup {
using Type = T;
static constexpr T identity() { return T(0); }
static constexpr T operation(const T& l, const T& r) { return l + r; }
static constexpr T inverse(const T& x) { return -x; }
};
using std::array;
using std::pair;
using std::tuple;
using std::vector;
constexpr int MAX = 200000;
constexpr int MAX2 = 2 * MAX + 1;
constexpr int LOG = ceil_log2(MAX2);
void main_() {
int N;
std::cin >> N;
vector<vector<int>> pts(MAX2);
int Q=N*2;
vector<int> A(Q), B(Q), K(Q);
for (int i = 0; i < N; ++i) {
int x, y;
std::cin >> x >> y;
pts[x + y].push_back(x - y + MAX);
A[i*2]=x+y;B[i*2]=x-y+MAX;K[i*2]=2;
A[i*2+1]=x+y;B[i*2+1]=x-y+MAX;K[i*2+1]=N;
}
vector<int> ok(Q, 2 * MAX), ng(Q, 0), cnt(Q);
vector<vector<tuple<int, int, int>>> add(MAX2), sub(MAX2);
for (const int step : rep(LOG)) {
std::fill(cnt.begin(), cnt.end(), 0);
for (auto& v : add) v.clear();
for (auto& v : sub) v.clear();
for (const int i : rep(Q)) {
const int k = (ok[i] + ng[i]) / 2;
const int l = std::max(0, B[i] - k), r = std::min(2 * MAX, B[i] + k) + 1;
sub[std::max(0, A[i] - k)].emplace_back(l, r, i);
add[std::min(2 * MAX, A[i] + k)].emplace_back(l, r, i);
}
FenwickTree<SumGroup<int>> fen(MAX2);
for (const int x : rep(0, MAX2)) {
for (const auto& [l, r, q] : sub[x]) {
cnt[q] -= fen.fold(l, r);
}
for (const int y : pts[x]) {
fen.add(y, 1);
}
for (const auto& [l, r, q] : add[x]) {
cnt[q] += fen.fold(l, r);
}
}
for (const int i : rep(Q)) {
const int md = (ok[i] + ng[i]) / 2;
(cnt[i] >= K[i] ? ok[i] : ng[i]) = md;
}
}
int ans=1e9;
for(int i=0;i<N;i++){
ans=std::min(ans,ok[i*2+1]-ok[i*2]);
//std::cout << ok[i*2+1]-ok[i*2] << '\n';
}
std::cout << ans << '\n';
}
int main() {
std::ios_base::sync_with_stdio(false);
std::cin.tie(nullptr);
main_();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0