結果
問題 | No.2435 Order All Company |
ユーザー | woodywoody |
提出日時 | 2023-08-18 23:55:35 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 27 ms / 2,000 ms |
コード長 | 18,040 bytes |
コンパイル時間 | 4,395 ms |
コンパイル使用メモリ | 240,288 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-28 11:42:56 |
合計ジャッジ時間 | 5,817 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 26 ms
5,248 KB |
testcase_06 | AC | 27 ms
5,248 KB |
testcase_07 | AC | 14 ms
5,248 KB |
testcase_08 | AC | 26 ms
5,248 KB |
testcase_09 | AC | 26 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 3 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 24 ms
5,248 KB |
testcase_15 | AC | 25 ms
5,248 KB |
testcase_16 | AC | 19 ms
5,248 KB |
testcase_17 | AC | 27 ms
5,248 KB |
testcase_18 | AC | 17 ms
5,248 KB |
testcase_19 | AC | 15 ms
5,248 KB |
testcase_20 | AC | 17 ms
5,248 KB |
testcase_21 | AC | 18 ms
5,248 KB |
testcase_22 | AC | 24 ms
5,248 KB |
testcase_23 | AC | 11 ms
5,248 KB |
testcase_24 | AC | 17 ms
5,248 KB |
testcase_25 | AC | 24 ms
5,248 KB |
testcase_26 | AC | 19 ms
5,248 KB |
testcase_27 | AC | 25 ms
5,248 KB |
testcase_28 | AC | 18 ms
5,248 KB |
testcase_29 | AC | 20 ms
5,248 KB |
testcase_30 | AC | 18 ms
5,248 KB |
testcase_31 | AC | 2 ms
5,248 KB |
testcase_32 | AC | 2 ms
5,248 KB |
testcase_33 | AC | 2 ms
5,248 KB |
testcase_34 | AC | 2 ms
5,248 KB |
testcase_35 | AC | 3 ms
5,248 KB |
ソースコード
#include<bits/stdc++.h> #include<atcoder/all> #define rep(i,b) for(int i=0;i<b;i++) #define rrep(i,b) for(int i=b-1;i>=0;i--) #define rep1(i,b) for(int i=1;i<b;i++) #define repx(i,x,b) for(int i=x;i<b;i++) #define rrepx(i,x,b) for(int i=b-1;i>=x;i--) #define fore(i,a) for(auto& i:a) #define rng(x) (x).begin(), (x).end() #define rrng(x) (x).rbegin(), (x).rend() #define sz(x) ((int)(x).size()) #define pb push_back #define fi first #define se second #define pcnt __builtin_popcountll using namespace std; using namespace atcoder; using ll = long long; using ld = long double; template<typename T> using mpq = priority_queue<T, vector<T>, greater<T>>; template<typename T> bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; } template<typename T> bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; } template<typename T> ll sumv(const vector<T>&a){ll res(0);for(auto&&x:a)res+=x;return res;} bool yn(bool a) { if(a) {cout << "Yes" << endl; return true;} else {cout << "No" << endl; return false;}} #define retval(x) {cout << #x << endl; return;} #define cout2(x,y) cout << x << " " << y << endl; #define coutp(p) cout << p.fi << " " << p.se << endl; #define out cout << ans << endl; #define outd cout << fixed << setprecision(20) << ans << endl; #define outm cout << ans.val() << endl; #define outv fore(yans , ans) cout << yans << "\n"; #define outdv fore(yans , ans) cout << yans.val() << "\n"; #define coutv(v) {fore(vy , v) {cout << vy << " ";} cout << endl;} #define coutv2(v) fore(vy , v) cout << vy << "\n"; #define coutvm(v) {fore(vy , v) {cout << vy.val() << " ";} cout << endl;} #define coutvm2(v) fore(vy , v) cout << vy.val() << "\n"; using pll = pair<ll,ll>;using pil = pair<int,ll>;using pli = pair<ll,int>;using pii = pair<int,int>;using pdd = pair<ld,ld>; using vi = vector<int>;using vd = vector<ld>;using vl = vector<ll>;using vs = vector<string>;using vb = vector<bool>; using vpii = vector<pii>;using vpli = vector<pli>;using vpll = vector<pll>;using vpil = vector<pil>; using vvi = vector<vector<int>>;using vvl = vector<vector<ll>>;using vvs = vector<vector<string>>;using vvb = vector<vector<bool>>; using vvpii = vector<vector<pii>>;using vvpli = vector<vector<pli>>;using vvpll = vector<vpll>;using vvpil = vector<vpil>; using mint = modint998244353; //using mint = modint1000000007; //using mint = dynamic_modint<0>; using vm = vector<mint>; using vvm = vector<vector<mint>>; vector<int> dx={1,0,-1,0,1,1,-1,-1},dy={0,1,0,-1,1,-1,1,-1}; ll gcd(ll a, ll b) { return a?gcd(b%a,a):b;} ll lcm(ll a, ll b) { return a/gcd(a,b)*b;} #define yes {cout <<"Yes"<<endl;} #define no {cout <<"No"<<endl;} const double eps = 1e-10; const ll LINF = 1001002003004005006ll; const int INF = 1001001001; #ifdef MY_LOCAL_DEBUG #define show(x) cerr<<#x<<" = "<<x<<endl #define showp(p) cerr<<#p<<" = "<<p.fi<<" : "<<p.se<<endl #define show2(x,y) cerr<<#x<<" = "<<x<<" : "<<#y<<" = "<<y<<endl #define show3(x,y,z) cerr<<#x<<" = "<<x<<" : "<<#y<<" = "<<y<<" : "<<#z<<" = "<<z<<endl #define show4(x,y,z,x2) cerr<<#x<<" = "<<x<<" : "<<#y<<" = "<<y<<" : "<<#z<<" = "<<z<<" : "<<#x2<<" = "<<x2<<endl #define test(x) cout << "test" << x << endl #define showv(v) {fore(vy , v) {cout << vy << " ";} cout << endl;} #define showv2(v) fore(vy , v) cout << vy << "\n"; #define showvm(v) {fore(vy , v) {cout << vy.val() << " ";} cout << endl;} #define showvm2(v) fore(vy , v) cout << vy.val() << "\n"; #else #define show(x) #define showp(p) #define show2(x,y) #define show3(x,y,z) #define show4(x,y,z,x2) #define test(x) #define showv(v) #define showv2(v) #define showvm(v) #define showvm2(v) #endif template <typename mint> struct FormalPowerSeries : vector<mint> { using vector<mint>::vector; using FPS = FormalPowerSeries; FPS &operator+=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i]; return *this; } FPS &operator+=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] += r; return *this; } FPS &operator-=(const FPS &r) { if (r.size() > this->size()) this->resize(r.size()); for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i]; return *this; } FPS &operator-=(const mint &r) { if (this->empty()) this->resize(1); (*this)[0] -= r; return *this; } FPS &operator*=(const mint &v) { for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v; return *this; } FPS &operator/=(const FPS &r) { if (this->size() < r.size()) { this->clear(); return *this; } int n = this->size() - r.size() + 1; if ((int)r.size() <= 64) { FPS f(*this), g(r); g.shrink(); mint coeff = g.back().inverse(); for (auto &x : g) x *= coeff; int deg = (int)f.size() - (int)g.size() + 1; int gs = g.size(); FPS quo(deg); for (int i = deg - 1; i >= 0; i--) { quo[i] = f[i + gs - 1]; for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j]; } *this = quo * coeff; this->resize(n, mint(0)); return *this; } return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev(); } FPS &operator%=(const FPS &r) { *this -= *this / r * r; shrink(); return *this; } FPS operator+(const FPS &r) const { return FPS(*this) += r; } FPS operator+(const mint &v) const { return FPS(*this) += v; } FPS operator-(const FPS &r) const { return FPS(*this) -= r; } FPS operator-(const mint &v) const { return FPS(*this) -= v; } FPS operator*(const FPS &r) const { return FPS(*this) *= r; } FPS operator*(const mint &v) const { return FPS(*this) *= v; } FPS operator/(const FPS &r) const { return FPS(*this) /= r; } FPS operator%(const FPS &r) const { return FPS(*this) %= r; } FPS operator-() const { FPS ret(this->size()); for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i]; return ret; } void shrink() { while (this->size() && this->back() == mint(0)) this->pop_back(); } FPS rev() const { FPS ret(*this); reverse(begin(ret), end(ret)); return ret; } FPS dot(FPS r) const { FPS ret(min(this->size(), r.size())); for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i]; return ret; } FPS pre(int sz) const { return FPS(begin(*this), begin(*this) + min((int)this->size(), sz)); } FPS operator>>(int sz) const { if ((int)this->size() <= sz) return {}; FPS ret(*this); ret.erase(ret.begin(), ret.begin() + sz); return ret; } FPS operator<<(int sz) const { FPS ret(*this); ret.insert(ret.begin(), sz, mint(0)); return ret; } FPS diff() const { const int n = (int)this->size(); FPS ret(max(0, n - 1)); mint one(1), coeff(1); for (int i = 1; i < n; i++) { ret[i - 1] = (*this)[i] * coeff; coeff += one; } return ret; } FPS integral() const { const int n = (int)this->size(); FPS ret(n + 1); ret[0] = mint(0); if (n > 0) ret[1] = mint(1); auto mod = mint::get_mod(); for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i); for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i]; return ret; } mint eval(mint x) const { mint r = 0, w = 1; for (auto &v : *this) r += w * v, w *= x; return r; } FPS log(int deg = -1) const { assert((*this)[0] == mint(1)); if (deg == -1) deg = (int)this->size(); return (this->diff() * this->inv(deg)).pre(deg - 1).integral(); } FPS pow(int64_t k, int deg = -1) const { const int n = (int)this->size(); if (deg == -1) deg = n; if (k == 0) { FPS ret(deg); if (deg) ret[0] = 1; return ret; } for (int i = 0; i < n; i++) { if ((*this)[i] != mint(0)) { mint rev = mint(1) / (*this)[i]; FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg); ret *= (*this)[i].pow(k); ret = (ret << (i * k)).pre(deg); if ((int)ret.size() < deg) ret.resize(deg, mint(0)); return ret; } if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0)); } return FPS(deg, mint(0)); } static void *ntt_ptr; static void set_fft(); FPS &operator*=(const FPS &r); void ntt(); void intt(); void ntt_doubling(); static int ntt_pr(); FPS inv(int deg = -1) const; FPS exp(int deg = -1) const; }; template <typename mint> void *FormalPowerSeries<mint>::ntt_ptr = nullptr; template <typename mint> struct ProductTree { using fps = FormalPowerSeries<mint>; const vector<mint> &xs; vector<fps> buf; int N, xsz; vector<int> l, r; ProductTree(const vector<mint> &xs_) : xs(xs_), xsz(xs.size()) { N = 1; while (N < (int)xs.size()) N *= 2; buf.resize(2 * N); l.resize(2 * N, xs.size()); r.resize(2 * N, xs.size()); fps::set_fft(); if (fps::ntt_ptr == nullptr) build(); else build_ntt(); } void build() { for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i], 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else buf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1]; } } void build_ntt() { fps f; f.reserve(N * 2); for (int i = 0; i < xsz; i++) { l[i + N] = i; r[i + N] = i + 1; buf[i + N] = {-xs[i] + 1, -xs[i] - 1}; } for (int i = N - 1; i > 0; i--) { l[i] = l[(i << 1) | 0]; r[i] = r[(i << 1) | 1]; if (buf[(i << 1) | 0].empty()) continue; else if (buf[(i << 1) | 1].empty()) buf[i] = buf[(i << 1) | 0]; else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.ntt_doubling(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } else { buf[i] = buf[(i << 1) | 0]; f.clear(); copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]), back_inserter(f)); buf[i].ntt_doubling(); f.intt(); f.resize(buf[i].size(), mint(0)); f.ntt(); for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j]; } } for (int i = 0; i < 2 * N; i++) { buf[i].intt(); buf[i].shrink(); } } }; template <typename mint> vector<mint> InnerMultipointEvaluation(const FormalPowerSeries<mint> &f, const vector<mint> &xs, const ProductTree<mint> &ptree) { using fps = FormalPowerSeries<mint>; vector<mint> ret; ret.reserve(xs.size()); auto rec = [&](auto self, fps a, int idx) { if (ptree.l[idx] == ptree.r[idx]) return; a %= ptree.buf[idx]; if ((int)a.size() <= 64) { for (int i = ptree.l[idx]; i < ptree.r[idx]; i++) ret.push_back(a.eval(xs[i])); return; } self(self, a, (idx << 1) | 0); self(self, a, (idx << 1) | 1); }; rec(rec, f, 1); return ret; } template <typename mint> vector<mint> MultipointEvaluation(const FormalPowerSeries<mint> &f, const vector<mint> &xs) { if(f.empty() || xs.empty()) return vector<mint>(xs.size(), mint(0)); return InnerMultipointEvaluation(f, xs, ProductTree<mint>(xs)); } template <class T> struct Matrix { vector<vector<T> > A; Matrix() = default; Matrix(int n, int m) : A(n, vector<T>(m, T())) {} Matrix(int n) : A(n, vector<T>(n, T())){}; int H() const { return A.size(); } int W() const { return A[0].size(); } int size() const { return A.size(); } inline const vector<T> &operator[](int k) const { return A[k]; } inline vector<T> &operator[](int k) { return A[k]; } static Matrix I(int n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { int n = H(), m = W(); assert(n == B.H() && m == B.W()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { int n = H(), m = W(); assert(n == B.H() && m == B.W()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { int n = H(), m = B.W(), p = W(); assert(p == B.H()); vector<vector<T> > C(n, vector<T>(m, T{})); for (int i = 0; i < n; i++) for (int k = 0; k < p; k++) for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j]; A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(H()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } bool operator==(const Matrix &B) const { assert(H() == B.H() && W() == B.W()); for (int i = 0; i < H(); i++) for (int j = 0; j < W(); j++) if (A[i][j] != B[i][j]) return false; return true; } bool operator!=(const Matrix &B) const { assert(H() == B.H() && W() == B.W()); for (int i = 0; i < H(); i++) for (int j = 0; j < W(); j++) if (A[i][j] != B[i][j]) return true; return false; } friend ostream &operator<<(ostream &os, const Matrix &p) { int n = p.H(), m = p.W(); for (int i = 0; i < n; i++) { os << (i ? " " : "") << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() const { Matrix B(*this); assert(H() == W()); T ret = 1; for (int i = 0; i < H(); i++) { int idx = -1; for (int j = i; j < W(); j++) { if (B[j][i] != 0) { idx = j; break; } } if (idx == -1) return 0; if (i != idx) { ret *= T(-1); swap(B[i], B[idx]); } ret *= B[i][i]; T inv = T(1) / B[i][i]; for (int j = 0; j < W(); j++) { B[i][j] *= inv; } for (int j = i + 1; j < H(); j++) { T a = B[j][i]; if (a == 0) continue; for (int k = i; k < W(); k++) { B[j][k] -= B[i][k] * a; } } } return ret; } }; template <class mint> FormalPowerSeries<mint> PolynomialInterpolation(const vector<mint> &xs, const vector<mint> &ys) { using fps = FormalPowerSeries<mint>; assert(xs.size() == ys.size()); ProductTree<mint> ptree(xs); fps w = ptree.buf[1].diff(); vector<mint> vs = InnerMultipointEvaluation<mint>(w, xs, ptree); auto rec = [&](auto self, int idx) -> fps { if (idx >= ptree.N) { if (idx - ptree.N < (int)xs.size()) return {ys[idx - ptree.N] / vs[idx - ptree.N]}; else return {mint(1)}; } if (ptree.buf[idx << 1 | 0].empty()) return {}; else if (ptree.buf[idx << 1 | 1].empty()) return self(self, idx << 1 | 0); return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] + self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0]; }; return rec(rec, 1); } template <typename mint> FormalPowerSeries<mint> PolynomialMatrixDeterminant( const Matrix<FormalPowerSeries<mint>> &m) { int N = m.size(); int deg = 0; for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1; vector<mint> xs(deg + 1); vector<mint> ys(deg + 1); Matrix<mint> M(N); for (int x = 0; x <= deg; x++) { xs[x] = x; for (int i = 0; i < N; ++i) for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x); ys[x] = M.determinant(); } return PolynomialInterpolation<mint>(xs, ys); } template <typename T> struct MatrixTree { int n; Matrix<T> m; MatrixTree(int _n) : n(_n), m(_n) { assert(n > 0); } void add(int i, int j, const T& x) { if (i < n) m[i][i] += x; if (j < n) m[j][j] += x; if (i < n and j < n) { m[i][j] -= x; m[j][i] -= x; } } Matrix<T> get() const { return m; } template <typename U, typename = void> struct has_value_type : false_type {}; template <typename U> struct has_value_type< U, typename conditional<false, typename U::value_type, void>::type> : true_type {}; template <typename U = T, enable_if_t<has_value_type<U>::value, nullptr_t> = nullptr> T calc() { return PolynomialMatrixDeterminant(m); } template <typename U = T, enable_if_t<!has_value_type<U>::value, nullptr_t> = nullptr> T calc() { return m.determinant(); } }; void solve(){ int n,k; cin>>n>>k; vector<vpii> e(k); rep(i,k){ int t; cin>>t; rep(j,t){ int a,b; cin>>a>>b; a--; b--; e[i].pb({a,b}); } } mint ans = 0; int l = 1 << k; rep1(i,l){ int p = pcnt(i); Matrix<mint> v(n-1); rep(j,k) if ((i>>j&1) == 1){ fore(y , e[j]){ if (y.fi && y.se) v[y.fi-1][y.se-1]--; if (y.fi && y.se) v[y.se-1][y.fi-1]--; if (y.fi) v[y.fi-1][y.fi-1]++; if (y.se) v[y.se-1][y.se-1]++; } } mint tmp = v.determinant(); if ((k-p)%2==1) tmp *= -1; ans += tmp; } outm; return; } int main(){ ios::sync_with_stdio(false); cin.tie(0); int t = 1; //cin>>t; rep(i,t){ solve(); } return 0; }