結果

問題 No.2435 Order All Company
ユーザー ecottea
提出日時 2023-08-19 01:58:45
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 46 ms / 2,000 ms
コード長 12,637 bytes
コンパイル時間 5,301 ms
コンパイル使用メモリ 262,260 KB
最終ジャッジ日時 2025-02-16 11:19:34
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
inline int msb(__int128 n) { return (n >> 64) != 0 ? (127 - __builtin_clzll((ll)(n >> 64))) : n != 0 ? (63 - __builtin_clzll((ll)(n))) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* Matrix<T>(int n, int m) : O(n m)
* n×m
*
* Matrix<T>(int n) : O(n^2)
* n×n
*
* Matrix<T>(vvT a) : O(n m)
* a[0..n)[0..m)
*
* bool empty() : O(1)
*
*
* A + B : O(n m)
* n×m A, B += 使
*
* A - B : O(n m)
* n×m A, B -= 使
*
* c * A A * c : O(n m)
* n×m A c *= 使
*
* A * x : O(n m)
* n×m A n x
*
* x * A : O(n m)
* m x n×m A
*
* A * B : O(n m l)
* n×m A m×l B
*
* Mat pow(ll d) : O(n^3 log d)
* d
*/
template <class T>
struct Matrix {
int n, m; // n m
vector<vector<T>> v; //
// n×m
Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}
// n×n
Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }
// a[0..n)[0..m)
Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
Matrix() : n(0), m(0) {}
//
Matrix(const Matrix&) = default;
Matrix& operator=(const Matrix&) = default;
//
inline vector<T> const& operator[](int i) const { return v[i]; }
inline vector<T>& operator[](int i) {
// verify : https://judge.yosupo.jp/problem/matrix_product
// inline [] v[]
return v[i];
}
//
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
return is;
}
//
bool empty() const { return min(n, m) == 0; }
//
bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
//
Matrix& operator+=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] += b[i][j];
return *this;
}
Matrix& operator-=(const Matrix& b) {
rep(i, n) rep(j, m) v[i][j] -= b[i][j];
return *this;
}
Matrix& operator*=(const T& c) {
rep(i, n) rep(j, m) v[i][j] *= c;
return *this;
}
Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
Matrix operator-() const { return Matrix(*this) *= T(-1); }
// : O(m n)
vector<T> operator*(const vector<T>& x) const {
vector<T> y(n);
rep(i, n) rep(j, m) y[i] += v[i][j] * x[j];
return y;
}
// : O(m n)
friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
vector<T> y(a.m);
rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
return y;
}
// O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://judge.yosupo.jp/problem/matrix_product
Matrix res(n, b.m);
rep(i, res.n) rep(j, res.m) rep(k, m) res[i][j] += v[i][k] * b[k][j];
return res;
}
Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }
// O(n^3 log d)
Matrix pow(ll d) const {
Matrix res(n), pow2 = *this;
while (d > 0) {
if (d & 1) res *= pow2;
pow2 *= pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.n) {
os << "[";
rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
if (i < a.n - 1) os << "\n";
}
return os;
}
#endif
};
//O(n^3)
/*
* n mat
*/
template <class T>
T determinant(const Matrix<T>& mat) {
// verify : https://judge.yosupo.jp/problem/matrix_det
int n = mat.n; auto v = mat.v;
// (i, j)i j
int i = 0, j = 0;
//
T res(1);
while (i < n && j < n) {
// 0
int i2 = i;
while (i2 < n && v[i2][j] == T(0)) i2++;
// 0
if (i2 == n) return T(0);
// i -1
if (i2 != i) {
swap(v[i], v[i2]);
res *= T(-1);
}
// v[i][j] 1 v[i][j] v[i][j]
res *= v[i][j];
T vij_inv = T(1) / v[i][j];
repi(j2, j, n - 1) v[i][j2] *= vij_inv;
// v[i][j] 0 i
repi(i2, i + 1, n - 1) {
T mul = v[i2][j];
repi(j2, j, n - 1) v[i2][j2] -= v[i][j2] * mul;
}
//
i++; j++;
}
return res;
}
//O(n^3)
/*
* g
*
* ,
*/
mint matrix_tree_theorem(const Graph& g) {
// : https://mizuwater0.hatenablog.com/entry/2018/11/25/233547
// verify : https://atcoder.jp/contests/jsc2021/tasks/jsc2021_g
int n = sz(g);
if (n <= 1) return 1;
// mat : g
// mat[s][s] : s
// mat[s][t] : -( s, t )
Matrix<mint> mat(n - 1, n - 1);
rep(s, n - 1) {
mat[s][s] = sz(g[s]);
repe(t, g[s]) {
Assert(s != t); //
if (t < n - 1) {
mat[s][t]--;
}
}
}
//
return determinant(mat);
}
//O(2^N N)
/*
* [0..N) f[S]
* g[S] = ΣT⊂S f[T] S : [0..N)
* g[0..2^N) f[0..2^N)
*
*
* f[S] = ΣT⊂S (-1)^|S-T| g[T]
*
*/
template <class T>
void set_submobius(vector<T>& g) {
// verify : https://judge.yosupo.jp/problem/bitwise_and_convolution
//N = 3
// f[0] = g[0]
// f[1] = -g[0] + g[1]
// f[2] = -g[0] + g[2]
// f[3] = g[0] - g[1] - g[2] + g[3]
// f[4] = -g[0] + g[4]
// f[5] = g[0] - g[1] - g[4] + g[5]
// f[6] = g[0] - g[2] - g[4] + g[6]
// f[7] = -g[0] + g[1] + g[2] - g[3] + g[4] - g[5] - g[6] + g[7]
int N = msb(sz(g));
rep(i, N) repb(set, N) if (!(set & (1 << i))) g[set + (1 << i)] -= g[set];
}
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, K;
cin >> n >> K;
vector<vector<pii>> ab(K);
rep(k, K) {
int t;
cin >> t;
ab[k].resize(t);
cin >> ab[k];
}
vm cnt(1LL << K);
repb(set, K) {
Graph g(n);
rep(k, K) {
if (get(set, k)) {
for (auto [a, b] : ab[k]) {
g[a - 1].push_back(b - 1);
g[b - 1].push_back(a - 1);
}
}
}
cnt[set] = matrix_tree_theorem(g);
}
set_submobius(cnt);
cout << cnt.back() << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0