結果

問題 No.2428 Returning Shuffle
ユーザー tofu_dra2
提出日時 2023-08-19 04:03:14
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 363 ms / 2,000 ms
コード長 8,922 bytes
コンパイル時間 4,658 ms
コンパイル使用メモリ 270,520 KB
最終ジャッジ日時 2025-02-16 11:24:28
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 23
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
#include <atcoder/all>
typedef long long int ll;
typedef long double ld;
using namespace std;
using namespace atcoder;
#define inf 1010000000
#define llinf 1001000000000000000ll
#define pi 3.141592653589793238
#define rep(i, n) for(ll i = 0; i < (n); i++)
#define rep1(i, n) for(ll i = 1; i <= (n); i++)
#define rep2(i,l,r) for(ll i = (l); i < (r); i++)
#define per(i, n) for(ll i = (n)-1; i >= 0; i--)
#define each(x, v) for (auto&& x : v)
#define rng(a) a.begin(),a.end()
#define fi first
#define se second
#define pb push_back
#define eb emplace_back
#define pob pop_back
#define st string
#define sz(x) (int)(x).size()
#define mems(x) memset(x, -1, sizeof(x));
#define pcnt __builtin_popcountll
#define _GLIBCXX_DEBUG
template <class T = ll>
inline T in(){ T x; cin >> x; return (x);}
#define vcin(x,n) {for(ll loop=0; loop<(n); loop++) cin>>x[loop];}
#define dame { puts("-1"); return 0;}
#define yes { puts("Yes"); return 0;}
#define no { puts("No"); return 0;}
#define ret(x) { cout<<(x)<<endl;}
#define rets(x) { cout<<(x)<< " ";}
#define Endl cout<<endl;
#define dump(x) { cout << #x << " = " << (x) << endl;}
template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return true; } return false;}
template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return true; } return false;}
// 便
#define bit(n) (1LL<<(n))
#define unique(v) v.erase( unique(v.begin(), v.end()), v.end())
//
// clock()/CLOCKS_PER_SEC
#define mod 998244353
using mint = modint998244353;
/*
#define mod 1000000007
using mint = modint1000000007;
*/
vector<ll> dx={1,0,-1,0};
vector<ll> dy={0,1,0,-1};
using pl = pair<ll,ll>;
using ppl = pair<pl,ll>;
using V = vector<ll>;
using Graph = vector<vector<ll>>;
// G.assign(n, vector<ll>()); G
//
template <typename T>
struct edge {
int src, to;
T cost;
edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}
edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}
edge &operator=(const int &x) {
to = x;
return *this;
}
operator int() const { return to; }
};
template <typename T>
using Edges = vector<edge<T>>;
template <typename T>
using WeightedGraph = vector<Edges<T>>;
using UnweightedGraph = vector<vector<int>>;
// Input of (Unweighted) Graph
UnweightedGraph graph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
UnweightedGraph g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
if (is_1origin) x--, y--;
g[x].push_back(y);
if (!is_directed) g[y].push_back(x);
}
return g;
}
// Input of Weighted Graph
template <typename T>
WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,
bool is_1origin = true) {
WeightedGraph<T> g(N);
if (M == -1) M = N - 1;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
cin >> c;
if (is_1origin) x--, y--;
g[x].emplace_back(x, y, c);
if (!is_directed) g[y].emplace_back(y, x, c);
}
return g;
}
// Input of Edges
template <typename T>
Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {
Edges<T> es;
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
es.emplace_back(x, y, c);
}
return es;
}
// Input of Adjacency Matrix
template <typename T>
vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,
bool is_directed = false, bool is_1origin = true) {
vector<vector<T>> d(N, vector<T>(N, INF));
for (int _ = 0; _ < M; _++) {
int x, y;
cin >> x >> y;
T c;
if (is_weighted)
cin >> c;
else
c = 1;
if (is_1origin) x--, y--;
d[x][y] = c;
if (!is_directed) d[y][x] = c;
}
return d;
}
// st
// unvisited nodes : d = -1
vector<int> Depth(const UnweightedGraph &g, int start = 0) {
int n = g.size();
vector<int> ds(n, -1);
ds[start] = 0;
queue<int> q;
q.push(start);
while (!q.empty()) {
int c = q.front();
q.pop();
int dc = ds[c];
for (auto &d : g[c]) {
if (ds[d] == -1) {
ds[d] = dc + 1;
q.push(d);
}
}
}
return ds;
}
// Depth of Rooted Weighted Tree
// unvisited nodes : d = -1
template <typename T>
vector<T> Depth(const WeightedGraph<T> &g, int start = 0) {
vector<T> d(g.size(), -1);
auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void {
d[cur] = val;
for (auto &dst : g[cur]) {
if (dst == par) continue;
rec(rec, dst, val + dst.cost, cur);
}
};
dfs(dfs, start, 0);
return d;
}
// Diameter of Tree
// return value : { {u, v}, length }
pair<pair<int, int>, int> Diameter(const UnweightedGraph &g) {
auto d = Depth(g, 0);
int u = max_element(begin(d), end(d)) - begin(d);
d = Depth(g, u);
int v = max_element(begin(d), end(d)) - begin(d);
return make_pair(make_pair(u, v), d[v]);
}
// Diameter of Weighted Tree
// return value : { {u, v}, length }
template <typename T>
pair<pair<int, int>, T> Diameter(const WeightedGraph<T> &g) {
auto d = Depth(g, 0);
int u = max_element(begin(d), end(d)) - begin(d);
d = Depth(g, u);
int v = max_element(begin(d), end(d)) - begin(d);
return make_pair(make_pair(u, v), d[v]);
}
// nodes on the path u-v ( O(N) )
template <typename G>
vector<int> Path(G &g, int u, int v) {
vector<int> ret;
int end = 0;
auto dfs = [&](auto rec, int cur, int par = -1) -> void {
ret.push_back(cur);
if (cur == v) {
end = 1;
return;
}
for (int dst : g[cur]) {
if (dst == par) continue;
rec(rec, dst, cur);
if (end) return;
}
if (end) return;
ret.pop_back();
};
dfs(dfs, u);
return ret;
}
template <typename T>
vector<T> dijkstra(WeightedGraph<T> &g, int start = 0) {
using P = pair<T, int>;
int N = (int)g.size();
vector<T> d(N, T(-1));
priority_queue<P, vector<P>, greater<P> > Q;
d[start] = 0;
Q.emplace(0, start);
while (!Q.empty()) {
P p = Q.top();
Q.pop();
int cur = p.second;
if (d[cur] < p.first) continue;
for (auto dst : g[cur]) {
if (d[dst] == T(-1) || d[cur] + dst.cost < d[dst]) {
d[dst] = d[cur] + dst.cost;
Q.emplace(d[dst], dst);
}
}
}
return d;
}
// edge<T> T
// Edges<T> T
// WeightedGraph<T> T(/)
// UnweightedGraph (/)
// graph(N, M(-1N-1), bool is_directed = false, bool is_1origin = true)
// UnweightedGraph
// ex) graph(n,,,) N
// wgraph<T>(,,,) =
// esgraph,adjgraph = ,
// - - ( O(N) )
// vector<int> Depth(UnweightedGraph g, int s = 0)
// s
// vector<T> Depth(weightedGraph<T> g, int s = 0)
// (()) s
// pair<pair<int, int>, int> Diameter(UnweightedGraph g)
// pair<pair<int, int>, T> Diameter<T>(WeightedGraph<T> g)
// ,
// vector<int> Path<UnweightedGraph>(G &g, int u, int v)
// vector<int> Path<WeightedGraph>(G &g, int u, int v)
// ()
// vector<T> dijkstra(g, s = 0)
// (O(ElogV))
// :O(ElogV)
// -1
//
vector<pl> prime(ll k){
vector<pl> p;
for(ll i=2; i*i<=k; i++){
if(k%i==0){
ll tmp = 0;
while(k%i==0){
tmp++;
k /= i;
}
p.eb(i,tmp);
if(k==1) break;
}
}
if(k!=1){
p.eb(k,1);
}
return p;
}
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
ll n = in();
vector<ll> a(n,0);
rep(i,n) a[i] = i;
ll m = in();
rep(_,m){
ll t = in();
vector<ll> v;
rep(i,t){
ll x = in();
v.eb(x-1);
}
ll tmp = a[v[t-1]];
per(i,t-1){
a[v[i+1]] = a[v[i]];
}
a[v[0]] = tmp;
}
dsu d(n);
rep(i,n){
d.merge(i,a[i]);
}
vector<ll> v;
each(x,d.groups()){
if((ll)x.size()==1) continue;
v.eb((ll)x.size());
}
if(v.empty()){
ret(1)
return 0;
}
// lcm998
map<ll,ll> mp;
each(x,v){
auto p = prime(x);
each(y,p){
chmax(mp[y.fi],y.se);
}
}
mint ans = 1;
each(x,mp){
ans *= pow_mod(x.fi,x.se,mod);
}
ret(ans.val())
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0