結果

問題 No.2456 Stamp Art
ユーザー 👑 p-adicp-adic
提出日時 2023-08-19 21:07:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 907 ms / 5,000 ms
コード長 21,907 bytes
コンパイル時間 3,529 ms
コンパイル使用メモリ 231,388 KB
実行使用メモリ 128,704 KB
最終ジャッジ日時 2024-06-11 17:54:38
合計ジャッジ時間 16,295 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 AC 754 ms
128,576 KB
testcase_04 AC 2 ms
6,940 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 808 ms
128,452 KB
testcase_07 AC 767 ms
128,576 KB
testcase_08 AC 634 ms
128,576 KB
testcase_09 AC 782 ms
128,576 KB
testcase_10 AC 868 ms
128,576 KB
testcase_11 AC 727 ms
128,576 KB
testcase_12 AC 718 ms
128,576 KB
testcase_13 AC 907 ms
128,576 KB
testcase_14 AC 871 ms
128,528 KB
testcase_15 AC 715 ms
128,572 KB
testcase_16 AC 341 ms
81,200 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 470 ms
88,424 KB
testcase_20 AC 788 ms
128,576 KB
testcase_21 AC 766 ms
119,396 KB
testcase_22 AC 834 ms
128,704 KB
testcase_23 AC 23 ms
37,628 KB
testcase_24 AC 54 ms
24,120 KB
testcase_25 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// 入力フォーマットチェック
#ifdef DEBUG
  #define _GLIBCXX_DEBUG
  #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr ); signal( SIGABRT , &AlertAbort )
  #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , DEBUG_VALUE )
  #define CERR( MESSAGE ) cerr << MESSAGE << endl;
  #define COUT( ANSWER ) cout << ANSWER << endl
  #define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " << ( MIN ) << ( ( MIN ) <= A ? "<=" : ">" ) << A << ( A <= ( MAX ) ? "<=" : ">" ) << ( MAX ) ); assert( ( MIN ) <= A && A <= ( MAX ) )
#else
  #pragma GCC optimize ( "O3" )
  #pragma GCC optimize( "unroll-loops" )
  #pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )
  #define UNTIE ios_base::sync_with_stdio( false ); cin.tie( nullptr )
  #define DEXPR( LL , BOUND , VALUE , DEBUG_VALUE ) CEXPR( LL , BOUND , VALUE )
  #define CERR( MESSAGE ) 
  #define COUT( ANSWER ) cout << ANSWER << "\n"
  #define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )
#endif
#include <bits/stdc++.h>
using namespace std;
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
#define ATT __attribute__( ( target( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" ) ) )
#define TYPE_OF( VAR ) decay_t<decltype( VAR )>
#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE
#define CIN( LL , A ) LL A; cin >> A
#define SET_ASSERT( A , MIN , MAX ) cin >> A; ASSERT( A , MIN , MAX )
#define CIN_ASSERT( A , MIN , MAX ) TYPE_OF( MAX ) A; SET_ASSERT( A , MIN , MAX )
#define GETLINE( A ) string A; getline( cin , A )
#define GETLINE_SEPARATE( A , SEPARATOR ) string A; getline( cin , A , SEPARATOR )
#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( TYPE_OF( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )
#define FOREQ( VAR , INITIAL , FINAL ) for( TYPE_OF( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )
#define FOREQINV( VAR , INITIAL , FINAL ) for( TYPE_OF( INITIAL ) VAR = INITIAL ; VAR >= FINAL ; VAR -- )
#define AUTO_ITR( ARRAY ) auto itr_ ## ARRAY = ARRAY .begin() , end_ ## ARRAY = ARRAY .end()
#define FOR_ITR( ARRAY ) for( AUTO_ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )
#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )
#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )
#define QUIT return 0
#define RETURN( ANSWER ) COUT( ( ANSWER ) ); QUIT

#ifdef DEBUG
  inline void AlertAbort( int n ) { CERR( "abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }
#endif

template <typename T> inline T Absolute( const T& a ){ return a > 0 ? a : -a; }
template <typename T> inline T Residue( const T& a , const T& p ){ return a >= 0 ? a % p : p - 1 - ( ( - ( a + 1 ) ) % p ); }

// 二分探索テンプレート
// EXPRESSIONがANSWERの広義単調関数の時、EXPRESSION >= TARGETの整数解を格納。
#define BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , DESIRED_INEQUALITY , TARGET , INEQUALITY_FOR_CHECK , UPDATE_U , UPDATE_L , UPDATE_ANSWER ) \
  static_assert( ! is_same<TYPE_OF( TARGET ),uint>::value && ! is_same<TYPE_OF( TARGET ),ull>::value ); \
  ll ANSWER = MINIMUM;							\
  if( MINIMUM <= MAXIMUM ){						\
    ll VARIABLE_FOR_BINARY_SEARCH_L = MINIMUM;				\
    ll VARIABLE_FOR_BINARY_SEARCH_U = MAXIMUM;				\
    ANSWER = ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2; \
    ll VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH;			\
    while( VARIABLE_FOR_BINARY_SEARCH_L != VARIABLE_FOR_BINARY_SEARCH_U ){ \
      VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH = ( EXPRESSION ) - ( TARGET ); \
      CERR( "二分探索中: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << "-" << TARGET << "=" << VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH ); \
      if( VARIABLE_FOR_DIFFERENCE_FOR_BINARY_SEARCH INEQUALITY_FOR_CHECK 0 ){	\
	VARIABLE_FOR_BINARY_SEARCH_U = UPDATE_U;			\
      } else {								\
	VARIABLE_FOR_BINARY_SEARCH_L = UPDATE_L;			\
      }									\
      ANSWER = UPDATE_ANSWER;						\
    }									\
    CERR( "二分探索終了: " << VARIABLE_FOR_BINARY_SEARCH_L << "<=" << ANSWER << "<=" << VARIABLE_FOR_BINARY_SEARCH_U << ":" << EXPRESSION << ( EXPRESSION > TARGET ? ">" : EXPRESSION < TARGET ? "<" : "=" ) << TARGET ); \
    CERR( ( EXPRESSION DESIRED_INEQUALITY TARGET ? "二分探索成功" : "二分探索失敗" ) ); \
    assert( EXPRESSION DESIRED_INEQUALITY TARGET );			\
  } else {								\
    CERR( "二分探索失敗: " << MINIMUM << ">" << MAXIMUM );		\
    assert( MINIMUM <= MAXIMUM );					\
  }									\

// 単調増加の時にEXPRESSION >= TARGETの最小解を格納。
#define BS1( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , >= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 単調増加の時にEXPRESSION <= TARGETの最大解を格納。
#define BS2( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , > , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 単調減少の時にEXPRESSION >= TARGETの最大解を格納。
#define BS3( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , >= , TARGET , < , ANSWER - 1 , ANSWER , ( VARIABLE_FOR_BINARY_SEARCH_L + 1 + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 単調減少の時にEXPRESSION <= TARGETの最小解を格納。
#define BS4( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , TARGET )		\
  BS( ANSWER , MINIMUM , MAXIMUM , EXPRESSION , <= , TARGET , <= , ANSWER , ANSWER + 1 , ( VARIABLE_FOR_BINARY_SEARCH_L + VARIABLE_FOR_BINARY_SEARCH_U ) / 2 ) \

// 入力フォーマットチェック用
// 1行中の変数の個数を確認
#define GETLINE_COUNT( S , VARIABLE_NUMBER ) GETLINE( S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S = 0; int VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S  = S.size(); { int size = S.size(); int count = 0; for( int i = 0 ; i < size ; i++ ){ if( S.substr( i , 1 ) == " " ){ count++; } } assert( count + 1 == VARIABLE_NUMBER ); }
// 余計な入力の有無を確認
#ifdef DEBUG
  #define CHECK_REDUNDANT_INPUT 
#else
  // #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; cin >> VARIABLE_FOR_CHECK_REDUNDANT_INPUT; assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
  #define CHECK_REDUNDANT_INPUT string VARIABLE_FOR_CHECK_REDUNDANT_INPUT = ""; getline( cin , VARIABLE_FOR_CHECK_REDUNDANT_INPUT ); assert( VARIABLE_FOR_CHECK_REDUNDANT_INPUT == "" ); assert( ! cin )
#endif
// |N| <= BOUNDを満たすNをSから構築
#define STOI( S , N , BOUND ) TYPE_OF( BOUND ) N = 0; { bool VARIABLE_FOR_POSITIVITY_FOR_GETLINE = true; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); if( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) == "-" ){ VARIABLE_FOR_POSITIVITY_FOR_GETLINE = false; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); } assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != " " ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; int VARIABLE_FOR_DIGIT_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != " " : false ){ VARIABLE_FOR_DIGIT_FOR_GETLINE = stoi( VARIABLE_FOR_LETTER_FOR_GETLINE ); assert( N < BOUND / 10 ? true : N == BOUND / 10 && VARIABLE_FOR_DIGIT_FOR_GETLINE <= BOUND % 10 ); N = N * 10 + VARIABLE_FOR_DIGIT_FOR_GETLINE; VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } if( ! VARIABLE_FOR_POSITIVITY_FOR_GETLINE ){ N *= -1; } if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }
// SをSEPARATORで区切りTを構築
#define SEPARATE( S , T , SEPARATOR ) string T{}; { assert( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ); int VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev = VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S; assert( S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) != SEPARATOR ); string VARIABLE_FOR_LETTER_FOR_GETLINE{}; while( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ? ( VARIABLE_FOR_LETTER_FOR_GETLINE = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S , 1 ) ) != SEPARATOR : false ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } T = S.substr( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev , VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S - VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S_prev ); if( VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S < VARIABLE_FOR_SIZE_FOR_GETLINE_FOR_ ## S ){ VARIABLE_FOR_INDEX_FOR_GETLINE_FOR_ ## S ++; } }

// 2次元配列上の累積和。
// 入力の範囲内で要件
// (1) (T,m_T:T^2->T,e_T:1->T,i_T:T->T)が可換群である。
// が成り立つ場合のみサポート。

// 配列による初期化O(size_X*size_Y)

// 始矩形和O(1)
// 矩形和O(1)
template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&)>
class TwoDimensionalCumulativeSum
{

private:
  int m_size_X;
  int m_size_Y;
  vector<vector<T> > m_a;
  
public:
  TwoDimensionalCumulativeSum( const vector<vector<T> >& a );
  template <int size_X_max , int size_Y_max> TwoDimensionalCumulativeSum( const T ( &a )[size_X_max][size_Y_max] , const int& size_X , const int& size_Y );

  // 条件
  // (1) -1 <= i_final_x < m_size_X
  // (2) -1 <= i_final_y < m_size_Y
  // を満たす場合のみサポート。
  // a[0][i_start_y]...a[i_final_x][i_start_y]...
  // a[0][i_final_y]...a[i_final_x][i_final_y]
  // をm_Tに関して計算する。
  inline const T& InitialRectangleSum( const int& i_x , const int& i_y ) const;

  // 条件
  // (1) 0 <= i_start_xかつi_start_x-1 <= i_final_x < m_size_X
  // (2) 0 <= i_start_yかつi_start_y-1 <= i_final_y < m_size_Y
  // を満たす場合のみサポート。
  // a[i_start_x][i_start_y]...a[i_final_x][i_start_y]...
  // a[i_start_x][i_final_y]...a[i_final_x][i_final_y]
  // をm_Tに関して計算する。
  inline T RectangleSum( const int& i_start_x , const int& i_start_y , const int& i_final_x , const int& i_final_y ) const;

};

template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&)>
TwoDimensionalCumulativeSum<T,m_T,e_T,i_T>::TwoDimensionalCumulativeSum( const vector<vector<T> >& a ) :
  m_size_X( a.size() ) , m_size_Y() , m_a( m_size_X + 1 )
{

  static_assert( ! is_same<T,int>::value );
  const T& zero = e_T();

  if( ! a.empty() ){

    m_size_Y = a[0].size();

  }

  m_a[0] = vector<T>( m_size_Y + 1 , zero );
  
  for( int x = 0 ; x < m_size_X ; x++ ){

    const vector<T>& a_x = a[x];
    const vector<T>& m_a_x_minus = m_a[x];
    vector<T>& m_a_x = m_a[x+1];
    m_a_x = vector<T>( m_size_Y + 1 , zero );
    T temp = zero;
      
    for( int y = 0 ; y < m_size_Y ; y++ ){

      m_a_x[y+1] = m_T( m_a_x_minus[y+1] , temp = m_T( temp , a_x[y] ) );

    }

  }

}

template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&)> template <int size_X_max , int size_Y_max>
TwoDimensionalCumulativeSum<T,m_T,e_T,i_T>::TwoDimensionalCumulativeSum( const T ( &a )[size_X_max][size_Y_max] , const int& size_X , const int& size_Y ) : m_size_X( size_X ) , m_size_Y( size_Y ) , m_a( m_size_X + 1 , vector<T>( m_size_Y + 1 , e_T() ) )
{

  assert( m_size_X <= size_X_max && m_size_Y <= size_Y_max );
  const T& zero = e_T();
  
  for( int x = 0 ; x < m_size_X ; x++ ){

    const T ( &a_x )[size_Y_max] = a[x];
    const vector<T>& m_a_x_minus = m_a[x];
    vector<T>& m_a_x = m_a[x+1];
    T temp = zero;
      
    for( int y = 0 ; y < m_size_Y ; y++ ){

      m_a_x[y+1] = m_T( m_a_x_minus[y+1] , temp = m_T( temp , a_x[y] ) );

    }

  }

}

template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&)> inline const T& TwoDimensionalCumulativeSum<T,m_T,e_T,i_T>::InitialRectangleSum( const int& i_x , const int& i_y ) const { assert( - 1 <= i_x && i_x < m_size_X && - 1 <= i_y && i_y < m_size_Y ); return m_a[i_x+1][i_y+1]; }

template <typename T , T m_T(const T&,const T&) , const T& e_T() , T i_T(const T&)> inline T TwoDimensionalCumulativeSum<T,m_T,e_T,i_T>::RectangleSum( const int& i_start_x , const int& i_start_y , const int& i_final_x , const int& i_final_y ) const
{ assert( 0 <= i_start_x && i_start_x - 1 <= i_final_x && i_final_x < m_size_X && 0 <= i_start_y && i_start_y - 1 <= i_final_y && i_final_y < m_size_Y ); return m_T( m_T( m_a[i_start_x][i_start_y] , i_T( m_T( m_a[i_final_x+1][i_start_y] , m_a[i_start_x][i_final_y+1] ) ) ) , m_a[i_final_x+1][i_final_y+1] ); }

// 2次元配列上の階差数列。基本的に2次元imos法
// https://imoz.jp/algorithms/imos_method.html
// に準拠。

// 入力の範囲内で要件
// (6) (T,operator+:T^2->T,T(),operator-:T->T)は可換群である。
// が成り立つ場合にのみサポート。

// initによる初期化O(size_X*size_Y)
// 配列による初期化O(size_X*size_Y)

// 一点代入O(size_X*size_Y)(作用の遅延評価を解消する。元々作用の遅延評価がない場合はO(1))
// 一点取得O(size_X*size_Y)(作用の遅延評価を解消する。元々作用の遅延評価がない場合はO(1))

// 一点加算O(1)(作用を遅延評価しない)
// 始矩形加算O(1)(作用を遅延評価する)
// 矩形加算O(1)(作用を遅延評価する)
// 加法O(size_X*size_Y)(作用の遅延評価を解消する)
template <typename T>
class TwoDimensionalDifferenceSequence
{

private:
  int m_size_X;
  int m_size_Y;
  vector<vector<T> > m_a;
  vector<vector<T> > m_lazy_addition;
  bool m_updated;
  
public:
  inline TwoDimensionalDifferenceSequence( const vector<vector<T> >& a );
  inline TwoDimensionalDifferenceSequence( vector<vector<T> >&& a );
  inline TwoDimensionalDifferenceSequence( const int& size_X , const int& size_Y );
  template <int size_X_max , int size_Y_max> inline TwoDimensionalDifferenceSequence( const T ( &a )[size_X_max][size_Y_max] , const int& size_X , const int& size_Y );

  
  // 作用の遅延評価を解消してから値を代入する。
  inline void Set( const int& i_x , const int& i_y , const T& t );
  // 作用の遅延評価を解消してから値を参照する。
  inline const T& Get( const int& i_x , const int& i_y );
  // 作用の遅延評価を解消せずに元々の値を参照する。
  inline T& Ref( const int& i_x , const int& i_y );

  // (i_x,i_y)での値にyを遅延評価せずに加算する。
  inline void Add( const int& i_x , const int& i_y , const T& t );

  // tを遅延評価で加算する。
  inline void RectangleAdd( const int& i_x_start , const int& i_start_y , const int& i_final_x , const int& i_final_y , const T& t );
  // tを遅延評価で減算する。
  inline void RectangleSubtract( const int& i_x_start , const int& i_start_y , const int& i_final_x , const int& i_final_y , const T& t );

  // 作用の遅延評価を解消してから全体を加算する。
  inline TwoDimensionalDifferenceSequence<T>& operator+=( const TwoDimensionalDifferenceSequence<T>& a );

  // 作用の遅延評価を解消する。
  void Update();

};

template <typename T> inline TwoDimensionalDifferenceSequence<T>::TwoDimensionalDifferenceSequence( const vector<vector<T> >& a ) : m_size_X( a.size() ) , m_size_Y() , m_a( a ) , m_lazy_addition( m_size_X , vector<T>( m_size_X > 0 ? m_a.front().size() : 0 ) ) , m_updated( false ) { static_assert( ! is_same<T,int>::value ); }
template <typename T> inline TwoDimensionalDifferenceSequence<T>::TwoDimensionalDifferenceSequence( vector<vector<T> >&& a ) : m_size_X( a.size() ) , m_size_Y() , m_a( move( a ) ) , m_lazy_addition( m_size_X , vector<T>( m_size_X > 0 ? m_a.front().size() : 0 ) ) , m_updated( false ) { static_assert( ! is_same<T,int>::value ); }

template <typename T> inline TwoDimensionalDifferenceSequence<T>::TwoDimensionalDifferenceSequence( const int& size_X , const int& size_Y ) : m_size_X( size_X ) , m_size_Y( size_Y ) , m_a( m_size_X , vector<T>( m_size_Y ) ) , m_lazy_addition( m_size_X , vector<T>( m_size_Y ) ) , m_updated( false ) { static_assert( ! is_same<T,int>::value ); }

template <typename T> template <int size_X_max , int size_Y_max> inline TwoDimensionalDifferenceSequence<T>::TwoDimensionalDifferenceSequence( const T ( &a )[size_X_max][size_Y_max] , const int& size_X , const int& size_Y ) : m_size_X( size_X ) , m_size_Y( size_Y ) , m_a( m_size_X ) , m_lazy_addition( m_size_X ) , m_updated( false )
{

  static_assert( ! is_same<T,int>::value );
  assert( m_size_X <= size_X_max && m_size_Y <= size_Y_max );

  for( int x = 0 ; x < m_size_X ; x++ ){

    const T ( &a_x )[size_Y_max] = a[x];
    vector<T>& m_a_x = m_a[x];
    m_a_x.reserve( m_size_Y );

    for( int y = 0 ; y < m_size_Y ; y++ ){

      m_a_x.push_back( a_x[y] );

    }

  }

}

template <typename T> inline void TwoDimensionalDifferenceSequence<T>::Set( const int& i_x , const int& i_y , const T& t ) { Update(); m_a[i_x][i_y] = t; }
template <typename T> inline const T& TwoDimensionalDifferenceSequence<T>::Get( const int& i_x , const int& i_y ) { Update(); return m_a[i_x][i_y]; }
template <typename T> inline T& TwoDimensionalDifferenceSequence<T>::Ref( const int& i_x , const int& i_y ) { return m_a[i_x][i_y]; }

template <typename T> inline void TwoDimensionalDifferenceSequence<T>::Add( const int& i_x , const int& i_y , const T& t ) { m_a[i_x][i_y] += t; }
  
template <typename T> inline void TwoDimensionalDifferenceSequence<T>::RectangleAdd( const int& i_start_x , const int& i_start_y , const int& i_final_x , const int& i_final_y , const T& t )
{

  m_updated = true;
  vector<T>& m_lazy_addition_i_start_x = m_lazy_addition[i_start_x];
  m_lazy_addition_i_start_x[i_start_y] += t;
  const int i_final_y_plus = i_final_y + 1;

  if( i_final_y_plus < m_size_Y ){

    m_lazy_addition_i_start_x[i_final_y_plus] -= t;

  }

  const int i_final_x_plus = i_final_x + 1;
  
  if( i_final_x_plus < m_size_X ){

    vector<T>& m_lazy_addition_i_final_x_plus = m_lazy_addition[i_final_x_plus];
    m_lazy_addition_i_final_x_plus[i_start_y] -= t;

    if( i_final_y_plus < m_size_Y ){

      m_lazy_addition_i_final_x_plus[i_final_y_plus] += t;

    }

  }

  return;
  
}

template <typename T> inline void TwoDimensionalDifferenceSequence<T>::RectangleSubtract( const int& i_start_x , const int& i_start_y , const int& i_final_x , const int& i_final_y , const T& t ) { RectangleAdd( i_start_x , i_start_y , i_final_x , i_final_y , -t ); }

template <typename T> inline TwoDimensionalDifferenceSequence<T>& TwoDimensionalDifferenceSequence<T>::operator+=( const TwoDimensionalDifferenceSequence<T>& a )
{

  assert( m_size_X == a.m_size_X && m_size_Y == a.m_size_Y );

  for( int x = 0 ; x < m_size_X ; x++ ){

    vector<T>& m_a_x = m_a[x];
    vector<T>& m_lazy_addition_x = m_a[x];
    const vector<T>& a_x = a.m_a[x];
    const vector<T>& lazy_addition_x = a.m_lazy_addition[x];

    for( int y = 0 ; y < m_size_Y ; y++ ){

      m_a_x[y] += a_x[y];
      m_lazy_addition_x[y] += lazy_addition_x[y];

    }
  
  }

  Update();
  return *this;

}

template <typename T> void TwoDimensionalDifferenceSequence<T>::Update()
{

  if( ! m_updated ){

    return;

  }

  vector<T> diff( m_size_Y );
  T zero{};
  
  for( int x = 0 ; x < m_size_X ; x++ ){

    vector<T>& m_a_x = m_a[x];
    vector<T>& m_lazy_addition_x = m_lazy_addition[x];
    T temp = zero;

    for( int y = 0 ; y < m_size_Y ; y++ ){

      T& m_lazy_addition_xy = m_lazy_addition_x[y];
      m_a_x[y] += diff[y] += temp += m_lazy_addition_xy;
      m_lazy_addition_xy = zero;

    }
  
  }

  m_updated = false;
  return;

}

inline DEXPR( int , bound_H , 2000 , 10 );
inline CEXPR( int , bound_W , bound_H );
static_assert( ll( bound_H ) * bound_W < ll( 1 ) << 31 );
inline CEXPR( int , bound_HW , bound_H * bound_W );
int H , W , HW;

template <typename T> inline T add( const T& t0 , const T& t1 ) { return t0 + t1; }
template <typename T> inline const T& zero() { static const T z = 0; return z; }
template <typename T> inline T add_inv( const T& t ) { return -t; }

ll black[bound_H][bound_W];
int Constructible( const ll& k , const TwoDimensionalCumulativeSum<ll,add<ll>,zero<ll>,add_inv<ll> >& tdca )
{

  ll k2 = k * k;
  int H_k = H - k;
  int W_k = W - k;
  TwoDimensionalDifferenceSequence<ll> tdds{ H , W };
  FOREQ( i , 0 , H_k ){
    FOREQ( j , 0 , W_k ){
      if( tdca.RectangleSum( i , j , i + k - 1 , j + k - 1 ) == k2 ){
	tdds.RectangleAdd( i , j , i + k - 1 , j + k - 1 , 1 );
      }
    }
  }
  FOR( i , 0 , H ){
    ll ( &black_i )[bound_W] = black[i];
    FOR( j , 0 , W ){
      if( ( black_i[j] > 0 ) != ( tdds.Get( i , j ) > 0 ) ){
	return 0;
      }
    }
  }
  return 1;
}

int main()
{
  UNTIE;
  GETLINE_COUNT( HW_str , 2 );
  STOI( HW_str , H_copy , bound_H );
  H = H_copy;
  STOI( HW_str , W_copy , bound_W );
  W = W_copy;
  cerr << H << "," << W << endl;
  HW = H * W;
  FOR( i , 0 , H ){
    GETLINE( Si );
    ll ( &black_i )[bound_W] = black[i];
    FOR( j , 0 , W ){
      const char& Sij = Si[j];
      if( Sij == '.' ){
	black_i[j] = 0;
      } else{
	assert( Sij == '#' );
	black_i[j] = 1;
      }
    }
  }
  CHECK_REDUNDANT_INPUT;
  TwoDimensionalCumulativeSum<ll,add<ll>,zero<ll>,add_inv<ll> > tdca{ black , H , W };
  BS3( answer , 1 , min( H , W ) , Constructible( answer , tdca ) , 1 );
  RETURN( answer );
}
0