結果
問題 | No.2507 Yet Another Subgraph Counting |
ユーザー | suisen |
提出日時 | 2023-08-21 04:38:39 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 4,597 bytes |
コンパイル時間 | 309 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 111,712 KB |
最終ジャッジ日時 | 2024-06-11 01:40:21 |
合計ジャッジ時間 | 31,968 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 96 ms
78,592 KB |
testcase_01 | AC | 104 ms
78,592 KB |
testcase_02 | AC | 99 ms
78,336 KB |
testcase_03 | AC | 79 ms
72,192 KB |
testcase_04 | AC | 73 ms
69,632 KB |
testcase_05 | AC | 281 ms
81,760 KB |
testcase_06 | AC | 75 ms
68,864 KB |
testcase_07 | AC | 96 ms
78,464 KB |
testcase_08 | AC | 124 ms
79,104 KB |
testcase_09 | AC | 70 ms
69,504 KB |
testcase_10 | AC | 123 ms
79,360 KB |
testcase_11 | AC | 279 ms
81,696 KB |
testcase_12 | AC | 125 ms
79,104 KB |
testcase_13 | AC | 141 ms
79,104 KB |
testcase_14 | AC | 310 ms
81,636 KB |
testcase_15 | AC | 78 ms
69,120 KB |
testcase_16 | AC | 78 ms
69,760 KB |
testcase_17 | AC | 314 ms
81,464 KB |
testcase_18 | AC | 69 ms
69,504 KB |
testcase_19 | AC | 227 ms
81,964 KB |
testcase_20 | AC | 68 ms
69,888 KB |
testcase_21 | AC | 96 ms
78,592 KB |
testcase_22 | AC | 130 ms
79,616 KB |
testcase_23 | AC | 288 ms
81,780 KB |
testcase_24 | AC | 189 ms
80,304 KB |
testcase_25 | AC | 382 ms
82,868 KB |
testcase_26 | AC | 735 ms
87,504 KB |
testcase_27 | AC | 321 ms
82,376 KB |
testcase_28 | AC | 408 ms
82,612 KB |
testcase_29 | AC | 126 ms
79,616 KB |
testcase_30 | AC | 720 ms
86,848 KB |
testcase_31 | AC | 1,763 ms
110,776 KB |
testcase_32 | TLE | - |
testcase_33 | AC | 290 ms
81,720 KB |
testcase_34 | AC | 258 ms
81,892 KB |
testcase_35 | AC | 282 ms
81,896 KB |
testcase_36 | AC | 166 ms
80,176 KB |
testcase_37 | AC | 1,761 ms
111,712 KB |
testcase_38 | AC | 1,824 ms
110,952 KB |
testcase_39 | AC | 1,793 ms
110,440 KB |
testcase_40 | AC | 1,696 ms
111,080 KB |
testcase_41 | AC | 1,840 ms
111,320 KB |
testcase_42 | AC | 1,765 ms
110,940 KB |
testcase_43 | AC | 708 ms
87,328 KB |
testcase_44 | AC | 1,796 ms
110,396 KB |
testcase_45 | AC | 313 ms
81,572 KB |
testcase_46 | AC | 270 ms
81,832 KB |
testcase_47 | AC | 1,746 ms
110,648 KB |
testcase_48 | AC | 164 ms
80,168 KB |
testcase_49 | AC | 1,717 ms
110,604 KB |
testcase_50 | AC | 260 ms
81,916 KB |
testcase_51 | AC | 726 ms
87,336 KB |
ソースコード
from typing import List N_MAX = 13 popcount = [0] * (1 << N_MAX) for S in range(1, 1 << N_MAX): popcount[S] = popcount[S & (S - 1)] + 1 def addeq_poly(f: List[int], g: List[int]): """ f += g """ for i, gi in enumerate(g): f[i] += gi def subeq_poly(f: List[int], g: List[int]): """ f -= g """ for i, gi in enumerate(g): f[i] -= gi def subset_zeta(f: List[int], n: int): """ Inplace conversion from f to ζf. ζf is defined as follows: (ζf)(S) = Σ[T⊆S] f(T) """ block = 1 while block < 1 << n: offset = 0 while offset < 1 << n: for p in range(offset, offset + block): f[p + block] += f[p] offset += 2 * block block <<= 1 def subset_zeta_poly(f: List[List[int]], n: int): """ Inplace conversion from f to ζf. ζf is defined as follows: (ζf)(S) = Σ[T⊆S] f(T) """ block = 1 while block < 1 << n: offset = 0 while offset < 1 << n: for p in range(offset, offset + block): addeq_poly(f[p + block], f[p]) offset += 2 * block block <<= 1 def subset_mobius_poly(f: List[List[int]], n: int): """ Inplace conversion from f to μf. μf is defined as follows: (μf)(S) = Σ[T⊆S] (-1)^(|S/T|) f(T) """ block = 1 while block < 1 << n: offset = 0 while offset < 1 << n: for p in range(offset, offset + block): subeq_poly(f[p + block], f[p]) offset += 2 * block block <<= 1 def mul_poly(f: List[int], g: List[int]): """ Returns h = fg mod x^n, where f, g are polynomials with degree n-1 defined as follows: f(x) = Σ_i f[i] x^i, g(x) = Σ_i g[i] x^i. """ n = len(f) h = [0] * n for i in range(n): for j in range(n - i): h[i + j] += f[i] * g[j] return h def ranked(f: List[int], n: int): """ Add rank """ return [[(i == popcount[S]) * f[S] for i in range(n + 1)] for S in range(1 << n)] def deranked(rf: List[List[int]], n: int): """ Remove rank """ return [rf[S][popcount[S]] for S in range(1 << n)] def subset_conv(f: List[int], g: List[int], n: int): rf = ranked(f, n) rg = ranked(g, n) subset_zeta_poly(rf, n) subset_zeta_poly(rg, n) for i in range(1 << n): rf[i] = mul_poly(rf[i], rg[i]) subset_mobius_poly(rf, n) return deranked(rf, n) def exp(f: List[int], n: int): """ Subset exp of Σ[S⊆{0,1,...,n-1}] f(S) """ assert f[0] == 0 g = [1] for i in range(n): g += subset_conv(g, f[1 << i: 1 << (i + 1)], i) return g def bit_deposit(src, mask): dst = 0 j = 0 for i in range(N_MAX): if (mask >> i) & 1: dst |= ((src >> j) & 1) << i j += 1 return dst def bit_extract(src, mask): dst = 0 j = 0 for i in range(N_MAX): if (mask >> i) & 1: dst |= ((src >> i) & 1) << j j += 1 return dst n, m = map(int, input().split()) edges = [] for _ in range(m): u, v = map(int, input().split()) u -= 1 v -= 1 edges.append((u, v)) # E[S] = # of edges connecting vertices in S E = [0] * (1 << n) for u, v in edges: E[(1 << u) | (1 << v)] += 1 subset_zeta(E, n) cycle = [0] * (1 << n) adj = [[] for _ in range(n)] for u, v in edges: adj[u].append(v) adj[v].append(u) cycle_dp = [[0] * n for _ in range(1 << n)] for v in range(n): cycle_dp[1 << v][v] = 1 for s in range(1, 1 << n): start = 0 while not ((s >> start) & 1): start += 1 for cur in range(n): if cycle_dp[s][cur] == 0: continue for nxt in adj[cur]: if start == nxt: cycle[s] += cycle_dp[s][cur] elif start < nxt and not ((s >> nxt) & 1): cycle_dp[s | (1 << nxt)][nxt] += cycle_dp[s][cur] for s in range(1, 1 << n): if popcount[s] == 1: cycle[s] = 1 elif popcount[s] == 2: cycle[s] = 0 else: cycle[s] //= 2 f = [0] for v in range(n): f += [0] * (1 << v) for X in range(1 << v, 1 << (v + 1)): mask = ((1 << (v + 1)) - 1) ^ X k = popcount[mask] g = [0] * (1 << k) for T in range(1 << k): S = bit_deposit(T, mask) g[T] = f[S] * (E[S | X] - E[S] - E[X]) exp_g = exp(g, k) for T in range(1 << k): S = bit_deposit(T, mask) f[S | X] += cycle[X] * exp_g[T] print(exp(f, n)[-1])