結果
問題 | No.2435 Order All Company |
ユーザー |
|
提出日時 | 2023-08-21 10:41:45 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 23 ms / 2,000 ms |
コード長 | 6,378 bytes |
コンパイル時間 | 14,570 ms |
コンパイル使用メモリ | 398,788 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-12-14 21:00:28 |
合計ジャッジ時間 | 15,867 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 36 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, usize1) => (read_value!($next, usize) - 1);($next:expr, [ $t:tt ]) => {{let len = read_value!($next, usize);read_value!($next, [$t; len])}};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// O(n^3)fn determinant(a: &[Vec<MInt>]) -> MInt {let n = a.len();assert_eq!(a[0].len(), n);let mut a = a.to_vec();let mut ans = MInt::new(1);for i in 0..n {let mut r = i;while r < n && a[r][i] == 0.into() {r += 1;}if r >= n {return MInt::new(0);}if r != i {a.swap(r, i);ans = -ans;}let aii = a[i][i];let aiiinv = aii.inv();a[i][i] = 1.into();for j in i + 1..n {a[i][j] *= aiiinv;}ans *= aii;for j in i + 1..n {let aji = a[j][i];a[j][i] = 0.into();for k in i + 1..n {let val = aji * a[r][k];a[j][k] -= val;}}}ans}// O(n^3)fn count_spanning_trees(mat: &[Vec<MInt>]) -> MInt {let n = mat.len();let mut sub = vec![vec![MInt::new(0); n - 1]; n - 1];for i in 0..n - 1 {let mut sum = MInt::new(0);for j in 0..n {if i != j {sum += mat[i][j];if j < n - 1 {sub[i][j] = -mat[i][j];}}}sub[i][i] = sum;}determinant(&sub)}// https://yukicoder.me/problems/no/2435 (3.5)// 包除原理を使えば 2^K <= 32 回の計算でできる。1 回の計算は行列木定理で O(N^3 + \sum t_i) できる。// Tags: matrix-tree-theorem, counting-spanning-treesfn main() {input! {n: usize, k: usize,ab: [[(usize1, usize1)]; k],}let mut ans = MInt::new(0);for bits in 0usize..1 << k {let mut e = vec![vec![MInt::new(0); n]; n];for i in 0..k {if (bits & 1 << i) == 0 {for &(a, b) in &ab[i] {e[a][b] += 1;e[b][a] += 1;}}}let sub = count_spanning_trees(&e);if bits.count_ones() % 2 == 1 {ans -= sub;} else {ans += sub;}}println!("{}", ans);}