結果

問題 No.2507 Yet Another Subgraph Counting
ユーザー suisensuisen
提出日時 2023-08-21 22:37:30
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 4,629 bytes
コンパイル時間 669 ms
コンパイル使用メモリ 82,376 KB
実行使用メモリ 125,660 KB
最終ジャッジ日時 2024-12-15 14:24:44
合計ジャッジ時間 30,723 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 94 ms
78,348 KB
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 AC 68 ms
69,412 KB
testcase_05 AC 256 ms
80,636 KB
testcase_06 AC 66 ms
68,904 KB
testcase_07 AC 93 ms
77,976 KB
testcase_08 AC 121 ms
79,204 KB
testcase_09 AC 67 ms
69,456 KB
testcase_10 AC 120 ms
79,492 KB
testcase_11 WA -
testcase_12 AC 124 ms
79,124 KB
testcase_13 WA -
testcase_14 WA -
testcase_15 AC 67 ms
68,720 KB
testcase_16 AC 67 ms
69,444 KB
testcase_17 WA -
testcase_18 AC 67 ms
69,156 KB
testcase_19 WA -
testcase_20 AC 67 ms
69,072 KB
testcase_21 AC 93 ms
78,380 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 AC 211 ms
80,228 KB
testcase_35 AC 259 ms
80,892 KB
testcase_36 AC 165 ms
80,024 KB
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 AC 685 ms
89,308 KB
testcase_44 AC 1,764 ms
123,056 KB
testcase_45 AC 265 ms
80,516 KB
testcase_46 AC 263 ms
80,268 KB
testcase_47 AC 1,697 ms
122,800 KB
testcase_48 WA -
testcase_49 WA -
testcase_50 WA -
testcase_51 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

from typing import List, Tuple

N_MAX = 13
popcount = [0] * (1 << N_MAX)
for S in range(1, 1 << N_MAX):
    popcount[S] = popcount[S & (S - 1)] + 1

def addeq_poly(f: List[int], g: List[int]):
    """
    f += g
    """
    for i, gi in enumerate(g):
        f[i] += gi

def subeq_poly(f: List[int], g: List[int]):
    """
    f -= g
    """
    for i, gi in enumerate(g):
        f[i] -= gi

def subset_zeta(f: List[int], n: int):
    """
    Inplace conversion from f to ζf. ζf is defined as follows:
        (ζf)(S) = Σ[T⊆S] f(T)
    """
    block = 1
    while block < 1 << n:
        offset = 0
        while offset < 1 << n:
            for p in range(offset, offset + block):
                f[p + block] += f[p]
            offset += 2 * block
        block <<= 1

def subset_zeta_poly(f: List[List[int]], n: int):
    """
    Inplace conversion from f to ζf. ζf is defined as follows:
        (ζf)(S) = Σ[T⊆S] f(T)
    """
    block = 1
    while block < 1 << n:
        offset = 0
        while offset < 1 << n:
            for p in range(offset, offset + block):
                addeq_poly(f[p + block], f[p])
            offset += 2 * block
        block <<= 1

def subset_mobius_poly(f: List[List[int]], n: int):
    """
    Inplace conversion from f to μf. μf is defined as follows:
        (μf)(S) = Σ[T⊆S] (-1)^(|S/T|) f(T)
    """
    block = 1
    while block < 1 << n:
        offset = 0
        while offset < 1 << n:
            for p in range(offset, offset + block):
                subeq_poly(f[p + block], f[p])
            offset += 2 * block
        block <<= 1

def mul_poly(f: List[int], g: List[int]):
    """
    Returns h = fg mod x^n, where f, g are polynomials with degree n-1 defined as follows:
        f(x) = Σ_i f[i] x^i,
        g(x) = Σ_i g[i] x^i.
    """
    n = len(f)
    h = [0] * n
    for i in range(n):
        for j in range(n - i):
            h[i + j] += f[i] * g[j]

    return h

def ranked(f: List[int], n: int):
    """
    Add rank
    """
    return [[(i == popcount[S]) * f[S] for i in range(n + 1)] for S in range(1 << n)]

def deranked(rf: List[List[int]], n: int):
    """
    Remove rank
    """
    return [rf[S][popcount[S]] for S in range(1 << n)]

def exp(f: List[int], n: int):
    """
    Subset exp of Σ[S⊆{0,1,...,n-1}] f(S)
    """
    assert f[0] == 0
    rf = ranked([1], 0)
    for i in range(n):
        rg = ranked(f[1 << i: 1 << (i + 1)], i)
        subset_zeta_poly(rg, i)
        for S in range(1 << i):
            rf[S].append(0)
            rg[S].insert(0, 1)
            rh = mul_poly(rf[S], rg[S])
            rf.append(rh)
    subset_mobius_poly(rf, n)
    return deranked(rf, n)

def bit_deposit(src: int, mask: int, bitwidth: int):
    dst = 0
    j = 0
    for i in range(bitwidth):
        if (mask >> i) & 1:
            dst |= ((src >> j) & 1) << i
            j += 1
    return dst

def count_cycles(n: int, edges: List[Tuple[int, int]]):
    cycle = [0] * (1 << n)
    adj = [[] for _ in range(n)]
    for u, v in edges:
        adj[u].append(v)
        adj[v].append(u)

    cycle_dp = [[0] * n for _ in range(1 << n)]
    for v in range(n):
        cycle_dp[1 << v][v] = 1
    for s in range(1, 1 << n):
        start = 0
        while not ((s >> start) & 1):
            start += 1
        for cur in range(n):
            if cycle_dp[s][cur] == 0:
                continue
            for nxt in adj[cur]:
                if start == nxt:
                    cycle[s] += cycle_dp[s][cur]
                elif start < nxt and not ((s >> nxt) & 1):
                    cycle_dp[s | (1 << nxt)][nxt] += cycle_dp[s][cur]

    for s in range(1, 1 << n):
        if popcount[s] == 1:
            cycle[s] = 1
        elif popcount[s] == 2:
            cycle[s] = 0
        else:
            cycle[s] //= 2
    return cycle

n, m = map(int, input().split())

edges = []
for _ in range(m):
    u, v = map(int, input().split())
    u -= 1
    v -= 1
    edges.append((u, v))

# E[S] = # of edges connecting vertices in S
E = [0] * (1 << n)
for u, v in edges:
    E[(1 << u) | (1 << v)] += 1
subset_zeta(E, n)

cycle = count_cycles(n, edges)

f = [0]
for v in range(n):
    f += [0] * (1 << v)
    for C in range(1 << v, 1 << (v + 1)):
        mask = ((1 << (v + 1)) - 1) ^ C
        k = popcount[mask]

        g = [0] * (1 << k)
        for A in range(1 << k):
            T = bit_deposit(A, mask, k + 1)
            g[A] = f[T] * (E[T | C] - E[T] - E[C])

        h = exp(g, k)
        for A in range(1 << k):
            X = bit_deposit(A, mask, k + 1) | C
            f[X] += cycle[C] * h[A]

print(exp(f, n)[-1])
0