結果
問題 | No.2507 Yet Another Subgraph Counting |
ユーザー | suisen |
提出日時 | 2023-08-21 22:42:49 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,856 ms / 2,000 ms |
コード長 | 4,561 bytes |
コンパイル時間 | 301 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 127,140 KB |
最終ジャッジ日時 | 2024-09-15 14:14:47 |
合計ジャッジ時間 | 31,703 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 104 ms
77,952 KB |
testcase_01 | AC | 104 ms
78,336 KB |
testcase_02 | AC | 106 ms
78,080 KB |
testcase_03 | AC | 80 ms
70,784 KB |
testcase_04 | AC | 77 ms
69,248 KB |
testcase_05 | AC | 269 ms
80,344 KB |
testcase_06 | AC | 75 ms
68,864 KB |
testcase_07 | AC | 103 ms
78,464 KB |
testcase_08 | AC | 131 ms
78,848 KB |
testcase_09 | AC | 76 ms
69,120 KB |
testcase_10 | AC | 133 ms
78,976 KB |
testcase_11 | AC | 269 ms
80,604 KB |
testcase_12 | AC | 131 ms
79,104 KB |
testcase_13 | AC | 132 ms
78,976 KB |
testcase_14 | AC | 276 ms
80,760 KB |
testcase_15 | AC | 76 ms
68,864 KB |
testcase_16 | AC | 78 ms
69,504 KB |
testcase_17 | AC | 275 ms
80,560 KB |
testcase_18 | AC | 77 ms
69,632 KB |
testcase_19 | AC | 229 ms
80,888 KB |
testcase_20 | AC | 77 ms
69,120 KB |
testcase_21 | AC | 105 ms
78,080 KB |
testcase_22 | AC | 135 ms
79,488 KB |
testcase_23 | AC | 280 ms
80,564 KB |
testcase_24 | AC | 190 ms
80,016 KB |
testcase_25 | AC | 392 ms
81,972 KB |
testcase_26 | AC | 749 ms
91,068 KB |
testcase_27 | AC | 279 ms
80,516 KB |
testcase_28 | AC | 394 ms
81,576 KB |
testcase_29 | AC | 134 ms
79,488 KB |
testcase_30 | AC | 734 ms
91,588 KB |
testcase_31 | AC | 1,825 ms
123,568 KB |
testcase_32 | AC | 1,767 ms
125,616 KB |
testcase_33 | AC | 274 ms
81,292 KB |
testcase_34 | AC | 228 ms
80,576 KB |
testcase_35 | AC | 273 ms
80,460 KB |
testcase_36 | AC | 178 ms
79,636 KB |
testcase_37 | AC | 1,771 ms
124,104 KB |
testcase_38 | AC | 1,856 ms
124,756 KB |
testcase_39 | AC | 1,846 ms
125,448 KB |
testcase_40 | AC | 1,821 ms
124,240 KB |
testcase_41 | AC | 1,845 ms
125,212 KB |
testcase_42 | AC | 1,792 ms
124,384 KB |
testcase_43 | AC | 724 ms
88,284 KB |
testcase_44 | AC | 1,818 ms
123,688 KB |
testcase_45 | AC | 268 ms
80,860 KB |
testcase_46 | AC | 271 ms
80,604 KB |
testcase_47 | AC | 1,790 ms
123,568 KB |
testcase_48 | AC | 179 ms
79,760 KB |
testcase_49 | AC | 1,833 ms
127,140 KB |
testcase_50 | AC | 229 ms
80,880 KB |
testcase_51 | AC | 720 ms
88,448 KB |
ソースコード
from typing import List, Tuple N_MAX = 13 popcount = [0] * (1 << N_MAX) for S in range(1, 1 << N_MAX): popcount[S] = popcount[S & (S - 1)] + 1 def addeq_poly(f: List[int], g: List[int]): """ f += g """ for i, gi in enumerate(g): f[i] += gi def subeq_poly(f: List[int], g: List[int]): """ f -= g """ for i, gi in enumerate(g): f[i] -= gi def subset_zeta(f: List[int], n: int): """ Inplace conversion from f to ζf. ζf is defined as follows: (ζf)(S) = Σ[T⊆S] f(T) """ block = 1 while block < 1 << n: offset = 0 while offset < 1 << n: for p in range(offset, offset + block): f[p + block] += f[p] offset += 2 * block block <<= 1 def subset_zeta_poly(f: List[List[int]], n: int): """ Inplace conversion from f to ζf. ζf is defined as follows: (ζf)(S) = Σ[T⊆S] f(T) """ block = 1 while block < 1 << n: offset = 0 while offset < 1 << n: for p in range(offset, offset + block): addeq_poly(f[p + block], f[p]) offset += 2 * block block <<= 1 def subset_mobius_poly(f: List[List[int]], n: int): """ Inplace conversion from f to μf. μf is defined as follows: (μf)(S) = Σ[T⊆S] (-1)^(|S/T|) f(T) """ block = 1 while block < 1 << n: offset = 0 while offset < 1 << n: for p in range(offset, offset + block): subeq_poly(f[p + block], f[p]) offset += 2 * block block <<= 1 def mul_poly(f: List[int], g: List[int]): """ Returns h = fg mod x^n, where f, g are polynomials with degree n-1 defined as follows: f(x) = Σ_i f[i] x^i, g(x) = Σ_i g[i] x^i. """ n = len(f) h = [0] * n for i in range(n): for j in range(n - i): h[i + j] += f[i] * g[j] return h def ranked(f: List[int], n: int): """ Add rank """ return [[(i == popcount[S]) * f[S] for i in range(n + 1)] for S in range(1 << n)] def deranked(rf: List[List[int]], n: int): """ Remove rank """ return [rf[S][popcount[S]] for S in range(1 << n)] def exp(f: List[int], n: int): """ Subset exp of Σ[S⊆{0,1,...,n-1}] f(S) """ assert f[0] == 0 rf = ranked([1], 0) for i in range(n): rg = ranked(f[1 << i: 1 << (i + 1)], i) subset_zeta_poly(rg, i) for S in range(1 << i): rf[S].append(0) rg[S].insert(0, 1) rh = mul_poly(rf[S], rg[S]) rf.append(rh) subset_mobius_poly(rf, n) return deranked(rf, n) def bit_deposit(src: int, mask: int, bitwidth: int): dst = 0 j = 0 for i in range(bitwidth): if (mask >> i) & 1: dst |= ((src >> j) & 1) << i j += 1 return dst def count_cycles(n: int, edges: List[Tuple[int, int]]): cycle = [0] * (1 << n) adj = [[] for _ in range(n)] for u, v in edges: adj[u].append(v) adj[v].append(u) cycle_dp = [[0] * n for _ in range(1 << n)] for v in range(n): cycle_dp[1 << v][v] = 1 for s in range(1, 1 << n): start = 0 while not ((s >> start) & 1): start += 1 for cur in range(n): if cycle_dp[s][cur] == 0: continue for nxt in adj[cur]: if start == nxt: cycle[s] += cycle_dp[s][cur] elif start < nxt and not ((s >> nxt) & 1): cycle_dp[s | (1 << nxt)][nxt] += cycle_dp[s][cur] for s in range(1, 1 << n): if popcount[s] == 1: cycle[s] = 1 elif popcount[s] == 2: cycle[s] = 0 else: cycle[s] //= 2 return cycle n, m = map(int, input().split()) edges = [] for _ in range(m): u, v = map(int, input().split()) u -= 1 v -= 1 edges.append((u, v)) # E[S] = # of edges connecting vertices in S E = [0] * (1 << n) for u, v in edges: E[(1 << u) | (1 << v)] += 1 subset_zeta(E, n) cycle = count_cycles(n, edges) f = [0] * (1 << n) for C in range(1, 1 << n): v = C.bit_length() - 1 mask = ((1 << (v + 1)) - 1) ^ C k = popcount[mask] g = [0] * (1 << k) for A in range(1 << k): T = bit_deposit(A, mask, v) g[A] = f[T] * (E[T | C] - E[T] - E[C]) h = exp(g, k) for A in range(1 << k): X = bit_deposit(A, mask, v) | C f[X] += cycle[C] * h[A] print(exp(f, n)[-1])