結果
| 問題 |
No.2440 Accuracy of Integer Division Approximate Functions
|
| ユーザー |
|
| 提出日時 | 2023-08-25 08:27:38 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 268 ms / 2,000 ms |
| コード長 | 993 bytes |
| コンパイル時間 | 186 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 79,104 KB |
| 最終ジャッジ日時 | 2024-12-23 16:55:33 |
| 合計ジャッジ時間 | 6,312 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 20 |
ソースコード
#!/usr/bin/env python3
import sys
readline = sys.stdin.buffer.readline
sys.setrecursionlimit(10 ** 7)
# From https://qiita.com/AkariLuminous/items/3e2c80baa6d5e6f3abe9
# \sum_{0<=i<n} floor((ai+b)/m)
def floor_sum(n, m, a, b):
ans = 0
while True:
if a >= m or a < 0:
ans += n * (n - 1) * (a // m) // 2
a %= m
if b >= m or b < 0:
ans += n * (b // m)
b %= m
y_max = a * n + b
if y_max < m: break
n, b, m, a = y_max // m, y_max % m, a, m
return ans
# a/b > c/d
def count(a, b, c, d, n):
lim = b * d // (a * d - b * c)
n = min(n, lim)
return n - (floor_sum(n + 1, b, a, 0) - floor_sum(n + 1, d, c, 0))
def calc(n, d, m, s):
if m * d == 1 << s:
return n
if m * d < 1 << s:
return count(1, d, m, 1 << s, n)
return count(m, 1 << s, 1, d, n)
q = int(readline())
for _ in range(q):
n, d, m, s = map(int, readline().split())
print(calc(n, d, m, s))