結果
| 問題 | No.2441 行列累乗 |
| コンテスト | |
| ユーザー |
shirokami
|
| 提出日時 | 2023-08-25 21:21:18 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 9,460 bytes |
| コンパイル時間 | 5,398 ms |
| コンパイル使用メモリ | 332,980 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-12-24 07:39:42 |
| 合計ジャッジ時間 | 6,519 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
#include <bits/extc++.h>
using namespace std;
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// using namespace __gnu_pbds;
// #include <boost/multiprecision/cpp_int.hpp>
// using Bint = boost::multiprecision::cpp_int;
// #include <atcoder/all>
// using namespace atcoder;
// https://atcoder.github.io/ac-library/production/document_ja/
using uint = unsigned int;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
constexpr ll mod = 1e9+7;
constexpr ll INF = 9'223'372'036'854'775'807/10;
#define rep(i,n) for (uint i = 0; i < uint(n); ++i)
#define All(a) (a).begin(),(a).end()
#define PI acos(-1)
vector<ll> dx = {1, 0, -1, 0, 1, 1, -1, -1};
vector<ll> dy = {0, 1, 0, -1, 1, -1, 1, -1};
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
struct Edge {
uint from, to;
long long cost;
int idx;
Edge() {}
Edge(uint from_, uint to_, long long cost_ = 1, int idx_ = -1) : from(from_), to(to_), cost(cost_), idx(idx_) {}
bool operator<(const Edge &e) const { return cost < e.cost; }
bool operator>(const Edge &e) const { return cost > e.cost; }
friend ostream& operator<<(ostream& os, const Edge& e) {
os << e.from << " " << e.to << " (" << e.cost << ")";
return os;
}
};
struct Graph {
vector<vector<Edge>> G;
vector<Edge> edges;
int idx = 0;
Graph() {}
Graph(uint n) : G(n) {}
void add_edge_direct(uint from, uint to, ll cost = 1) {
G[from].emplace_back(from, to, cost, idx);
edges.emplace_back(from, to, cost, idx);
idx++;
}
void add_edge(uint from, uint to, ll cost = 1) {
G[from].emplace_back(from, to, cost, idx);
G[to].emplace_back(to, from, cost, idx);
edges.emplace_back(from, to, cost, idx);
idx++;
}
size_t size() const { return G.size(); }
vector<Edge>& operator[](int k) { return G[k]; }
friend ostream& operator<<(ostream& os, Graph& g) {
for (uint i = 0; i < g.size(); i++) {
for (Edge e : g[i]) {
cout << e << '\n';
}
}
return os;
}
};
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
cout << setprecision(15) << fixed;
}
} iosetup;
void print(const vector<string> &v) {
for (string s : v) {
cout << s << '\n';
}
}
template<typename T>
void print(const vector<pair<T, T>> &v, uint w = 0) {
for (uint i = 0; i < (uint)v.size(); i++) {
cout << right << setw(w) << v[i].first << ' ' << v[i].second << '\n';
}
}
template<typename T>
void print(const vector<T> &v, uint w = 0) {
for (uint i = 0; i < (uint)v.size(); i++) {
cout << right << setw(w) << v[i] << " \n"[i == (int)v.size() - 1];
}
}
template<typename T>
void print(const vector<vector<T>> &v, uint w = 0) {
for (uint i = 0; i < (uint)v.size(); i++) {
print(v[i], w);
}
}
template<typename T>
void print(const T& arg) {
cout << arg << '\n';
}
template<typename T, typename... Args>
void print(const T& arg, const Args&... args) {
cout << arg << ' ';
print(args...);
}
template<typename T>
istream& operator>>(istream& is, vector<T>& vec) {
for (auto& x : vec) is >> x;
return is;
}
template<typename T>
struct Matrix {
int cols, rows;
vector<vector<T>> mat;
Matrix(int n, int m) : cols(m), rows(n), mat(n, vector<T>(m)) {}
Matrix(int n) : cols(n), rows(n), mat(n, vector<T>(n)) {}
Matrix(vector<vector<T>> &v) : mat(v) {
rows = mat.size();
cols = mat[0].size();
}
Matrix(vector<T> &v) : mat(v, 1) {
rows = mat.size();
cols = mat[0].size();
}
Matrix(initializer_list<vector<T>> v) : mat(v) {
rows = mat.size();
cols = mat[0].size();
}
// 要素アクセス
vector<T>& operator[](int i) {
return mat[i];
}
T& operator()(int i, int j) {
return mat[i][j];
}
// 単位行列
Matrix eye(int n) {
Matrix res(n);
for (int i = 0; i < n; i++) {
res.mat[i][i] = 1;
}
return res;
}
// 足し算
Matrix operator+(const Matrix& rhs) const {
assert(rows == rhs.rows && cols == rhs.cols);
Matrix res(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
res.mat[i][j] = mat[i][j] + rhs.mat[i][j];
}
}
return res;
}
// 足し算の代入
Matrix& operator+=(const Matrix& rhs) {
assert(rows == rhs.rows && cols == rhs.cols);
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
mat[i][j] += rhs.mat[i][j];
}
}
return *this;
}
// 引き算
Matrix operator-(const Matrix& rhs) const {
assert(rows == rhs.rows && cols == rhs.cols);
Matrix res(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
res.mat[i][j] = mat[i][j] - rhs.mat[i][j];
}
}
return res;
}
// 引き算の代入
Matrix& operator-=(const Matrix& rhs) {
assert(rows == rhs.rows && cols == rhs.cols);
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
mat[i][j] -= rhs.mat[i][j];
}
}
return *this;
}
// 掛け算
Matrix operator*(const Matrix& rhs) const {
assert(cols == rhs.rows);
Matrix res(rows, rhs.cols);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < rhs.cols; j++) {
for (int k = 0; k < cols; k++) {
res.mat[i][j] += mat[i][k] * rhs.mat[k][j];
}
}
}
return res;
}
// 掛け算の代入
Matrix& operator*=(const Matrix& rhs) {
assert(cols == rhs.rows);
Matrix res(rows, rhs.cols);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < rhs.cols; j++) {
for (int k = 0; k < cols; k++) {
res.mat[i][j] += mat[i][k] * rhs.mat[k][j];
}
}
}
*this = res;
return *this;
}
// スカラー倍
Matrix operator*(const long long& rhs) const {
Matrix res(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
res.mat[i][j] = mat[i][j] * rhs;
}
}
return res;
}
// スカラー倍の代入
Matrix& operator*=(const long long& rhs) {
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
mat[i][j] *= rhs;
}
}
return *this;
}
// スカラー逆数倍
Matrix operator/(const long long& rhs) const {
Matrix res(rows, cols);
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
res.mat[i][j] = mat[i][j] / rhs;
}
}
return res;
}
// スカラー逆数倍の代入
Matrix& operator/=(const long long& rhs) {
for (int i = 0; i < rows; i++) {
for (int j = 0;j < cols; j++) {
mat[i][j] /= rhs;
}
}
return *this;
}
// 転置
Matrix transpose() const {
Matrix res(cols, rows);
for (int i = 0; i < cols; i++) {
for (int j = 0;j < rows; j++) {
res.mat[i][j] = mat[j][i];
}
}
return res;
}
// 内積
long long dot(const Matrix& rhs) const {
assert(rows == 1 && rhs.rows == 1 && cols == rhs.cols);
long long res = 0;
for (int i = 0; i < cols; i++) {
res += mat[0][i] * rhs.mat[0][i];
}
return res;
}
long long dot(const vector<long long>& rhs) const {
assert(rows == 1 && cols == rhs.size());
long long res = 0;
for (int i = 0; i < cols; i++) {
res += mat[0][i] * rhs[i];
}
return res;
}
// 外積
Matrix cross(const Matrix& rhs) const {
assert(rows == 1 && rhs.rows == 1 && cols == rhs.cols && cols == 3);
Matrix res(1, 3);
res.mat[0][0] = mat[0][1] * rhs.mat[0][2] - mat[0][2] * rhs.mat[0][1];
res.mat[0][1] = mat[0][2] * rhs.mat[0][0] - mat[0][0] * rhs.mat[0][2];
res.mat[0][2] = mat[0][0] * rhs.mat[0][1] - mat[0][1] * rhs.mat[0][0];
return res;
}
// 累乗
Matrix pow(long long n) const {
assert(rows == cols);
Matrix res(rows, cols);
Matrix x = *this;
for (int i = 0; i < rows; i++) {
res.mat[i][i] = 1;
}
while (n > 0) {
if (n & 1) res *= x;
x *= x;
n >>= 1;
}
return res;
}
};
template <typename T>
void print(Matrix<T> a, int w = 1) {
cout << "Matrix: " << a.rows << " x " << a.cols << endl;
for (int i = 0; i < a.rows; i++) {
for (int j = 0; j < a.cols; j++) {
cout << right << setw(w);
cout << a.mat[i][j] << " \n"[j == a.cols - 1];
}
}
}
void solve() {
vector<vector<ll>> a(2, vector<ll>(2));
rep(i, 2) rep(j, 2) cin >> a[i][j];
Matrix<ll> A(a);
A = A.pow(3);
rep(i,2) rep(j,2) cout << A[i][j] << " \n"[j==1];
}
int main() {
uint t = 1;
// cin >> t;
while (t--) {
solve();
}
}
shirokami