結果

問題 No.2441 行列累乗
ユーザー Astral__Astral__
提出日時 2023-08-25 21:22:49
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 9,918 bytes
コンパイル時間 2,340 ms
コンパイル使用メモリ 217,040 KB
最終ジャッジ日時 2025-02-16 13:39:17
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
#define PPque priority_queue<tuple<ll, ll, ll>, vector<tuple<ll, ll, ll>>, greater<tuple<ll, ll, ll>>>
#define Pque priority_queue<pair<ll, ll>, vector<pair<ll, ll>>, greater<pair<ll, ll>>>
#define pque priority_queue<int, vector<int>, greater<int>>
#define umap unordered_map
#define uset unordered_set
#define rep(i, s, f) for(ll i = s; i <= f; i++)
#define per(i, s, f) for(ll i = s; i >= f; i--)
#define all0(x) (x).begin() ,(x).end()
#define all(x) (x).begin() + 1, (x).end()
#define vvvi vector<vector<vector<int>>>
#define vvvl vector<vector<vector<ll>>>
#define vvvc vector<vector<vector<char>>>
#define vvvd vector<vector<vector<double>>>
#define vvi vector<vector<int>>
#define vvl vector<vector<ll>>
#define vvs vector<vector<string>>
#define vvc vector<vector<char>>
#define vvp vector<vector<pair<ll, ll>>>
#define vvb vector<vector<bool>>
#define vvd vector<vector<double>>
#define vp vector<pair<ll, ll>>
#define vi vector<int>
#define vl vector<ll>
#define vs vector<string>
#define vc vector<char>
#define vb vector<bool>
#define vd vector<double>
#define P pair<ll, ll>
#define TU tuple<ll, ll, ll>
#define rrr(l, r) mt()%(r-l+1)+l
#define ENDL '\n'
#define ull unsigned long long
#define debug(a, s) rep(i, s, a.size()-1) {cout << a.at(i) << " ";}cout << endl;
#define Debug(a, s) rep(i, s, a.size()-1) {rep(j, s, a.at(i).size()-1) {cout << a.at(i).at(j) << " ";}cout << endl;}
typedef long long ll;
using namespace std;
////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
template <typename T>
T or_less(vector<T> &A, T x) { //x : sort : -1
return distance(A.begin(), upper_bound(A.begin(), A.end(), x)-1);
}
template <typename T>
T under(vector<T> &A, T x) { //x : sort : -1
return distance(A.begin(), lower_bound(A.begin(), A.end(), x)-1);
}
template <typename T>
T or_more(vector<T> &A, T x) { //x  : sort : N . //distanceA.beginA.begin() NG: A
    .begin() + 1
return distance(A.begin(), lower_bound(A.begin(), A.end(), x));
}
template <typename T>
T over(vector<T> &A, T x) { //x: sort : N
return distance(A.begin(), upper_bound(A.begin(), A.end(), x));
}
void compress(vector<ll> &A) {//reverseNG
vector<ll> temp = A;
sort(temp.begin()+1, temp.end());
for (int i = 1; i <= int(A.size()-1); i++) {
A.at(i) = distance(temp.begin(), lower_bound(temp.begin()+1, temp.end(), A.at(i)));
}
}
ll LIS1(vl &A) {//at(0)調
ll N = A.size()-1;
vl L(N+1, 1001001001001001001LL);
L.at(0) = -1 * 1001001001001001001LL;
ll ans = 0;
rep(i, 1, N) {
ll idx = over<ll>(L, A.at(i));
L.at(idx) = A.at(i);
ans = max(ans, idx);
}
return ans;
}
ll LIS2(vl &A) {//調
ll N = A.size() - 1;
vl L(N+1, 1001001001001001001LL);
L.at(0) = -1 * 1001001001001001001LL;
ll ans = 0;
rep(i, 1, N) {
ll idx = or_more<ll>(L, A.at(i));
L.at(idx) = A.at(i);
ans = max(ans, idx);
}
return ans;
}
//////////////////////////////////////////////////////////////////////
//
///////////////////////////////////////////////////////////////////////
ll POWER(ll a, ll b, ll mod) {
a %= mod;
vector<ll> pow (61);
pow.at(0) = a;
bitset<60> bina(b);
ll answer = 1;
for (int i = 1; i <= 60; i++) {
pow.at(i) = pow.at(i-1) * pow.at(i-1) % mod;
if (bina.test(i-1)) {
answer = (answer*pow.at(i-1)) % mod;
}
}
return answer;
}
ll Div(ll a, ll b, ll mod) {
return a * POWER(b, mod-2, mod) % mod;
}
ll round(ll x, ll i) {
return ll(x + 5 * pow(10, i-1))/ll(pow(10, i)) * ll(pow(10, i));
}
template <typename T> //
void normalize(T &mol, T &deno) {
T mol_temp = abs(mol);
T deno_temp = abs(deno);
T GCD = gcd(mol_temp, deno_temp);
mol /= GCD;
deno /= GCD;
}
vvl mat_mul(vvl &a, vvl &b, ll mod) {//0-indexed &&
ll n = a.size();
vvl res(n , vl(n, 0));
rep(i, 0, n-1) {
rep(j, 0, n-1) {
rep(k, 0, n-1) {
res.at(i).at(j) += a.at(i).at(k) * b.at(k).at(j);
res.at(i).at(j) %= mod;
}
}
}
return res;
}
vvl mat_pow(vvl &a, ll b, ll mod) {//0-indexed &&
bitset<60> bina(b);
vvl power = a;
int N = a.size();
vvl res(N, vl(N, 0));
rep(i, 0, N-1) {
res.at(i).at(i) = 1;
}
rep(i, 1, 60) {
if (bina.test(i-1)) {
res = mat_mul(res, power, mod);
}
power = mat_mul(power, power, mod);
}
return res;
}
vvl comb(ll n, ll mod) {//O(N^2) O(1)
vvl v(n+1, vl(n+1, 0));
rep(i, 0, v.size() - 1) {
v.at(i).at(0) = 1;
v.at(i).at(i) = 1;
}
rep(i, 1, v.size()-1) {
rep(j, 1, i) {
v.at(i).at(j) = v.at(i-1).at(j-1) + v.at(i-1).at(j);
v.at(i).at(j) %= mod;
}
}
return v;
}
ll nCk(int n, int k, ll mod) {//O(max( ))
ll ue = 1;
ll sita = 1;
for (int i = 1; i <= k; i++) {
sita *= i;
sita %= mod;
}
for (int i = 1; i <= k; i++) {
ue *= (n-i+1);
ue %= mod;
}
return Div(ue, sita, mod);
}
ll gaiseki(P a, P b) { //ab aOb180°
return a.first * b.second - a.second * b.first;
}
ll gaiseki(P a, P b, P c) { //cab
return (a.first - c.first) * (b.second - c.second) - (a.second - c.second) * (b.first - c.first);
}
ll nto10(string S, ll base) {
ll res = 0;
reverse(all0(S));
while(!S.empty()) {
ll num = S.back() - '0';
if(num < 0 || num > 9) num = 9 + S.back() - 'a' + 1;
res = res * base + num;
S.pop_back();
}
return res;
}
string toN(ll N, ll base) {
if(N == 0) return "0";
string ans ="";
ll MOD = abs(base);
while(N != 0) {
ll first = N % MOD;
while(first < 0) first += MOD;
ans += to_string(first);
N -= first;
N /= base;
}
reverse(all0(ans));
return ans;
}
vp factrization(ll N) {
vp res;
for (int i = 2; i * i <= N; i++) {
ll cnt = 0;
while(N % i == 0) {
cnt++;
N /= i;
}
if(cnt != 0) res.push_back(P(i, cnt));
}
if(N != 1) res.push_back(P(N, 1));
return res;
}
struct comb_fast {//must
vl fac;
vl facinv;
vl inv;
ll mod_comb;
comb_fast (ll n, ll mod) {
mod_comb = mod;
fac.assign(n+1, 1);
facinv.assign(n+1, 1);
inv.assign(n+1, 1);
rep(i, 2, n) {
fac.at(i) = fac.at(i-1) * i % mod_comb;
inv.at(i) = mod_comb - inv.at(mod_comb%i) * (mod_comb/i)%mod_comb;
facinv.at(i) = facinv.at(i-1) * inv.at(i) % mod_comb;
}
}
ll get(ll n, ll k) {
if(n < k) return 0;
if(n < 0 || k < 0) return 0;
return fac.at(n) * (facinv.at(k) * facinv.at(n-k)%mod_comb)%mod_comb;
}
};
double KAKUDO(double rad) {
double res = rad * 180 / 3.141592653589793;
return res;
}
double RAD(double kakudo) {
return kakudo / 180 * 3.141592653589793;
}
double KAKUDO(P from, P to, P inside) {
from.first -= inside.first; from.second -= inside.second;
to.first -= inside.first; to.second -= inside.second;
double kakudor = atan2(from.first, from.second);
kakudor = KAKUDO(kakudor);
double kakudol = atan2(to.first, to.second);
kakudol = KAKUDO(kakudol);
double res = kakudol - kakudor;
if(res < 0)res += 360;
if(res > 360) res -= 360;
return res;
}
ll extgcd (ll a, ll b, ll &x, ll &y) {
if(b == 0) {
x = 1;
y = 0;
return a;
}
ll d = extgcd(b, a%b, y, x);
y -= a/b * x;
return d;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//
ll int_max = 1001001001;
ll ll_max = 1001001001001001001LL;
const double pi = 3.141592653589793;
vl dx{0, 1, 0, -1, 0, 1, 1, -1, -1};
vl dy{0, 0, -1, 0, 1, 1, -1, -1, 1};
//#pragma GCC optimize ("-O3")
//ll mod = 1000000007;
//ll mod = 998244353;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T>
struct Matrix {
int h, w;
vector<vector<T>> d;
Matrix() {}
Matrix(int h, int w, T val = 0): h(h), w(w), d(h, vector<T>(w, val)){}
Matrix& unit() {
assert(h == w);
rep(i, 0, h-1) {
d[i][i] = 1;
}
return *this;
}
const vector<T>& operator[](int i) const{return d[i];}
vector<T>& operator[](int i) {return d[i];}
Matrix operator*(const Matrix&a) const{
assert(w == a.h);
Matrix r(h, a.w);
rep(i, 0, h-1) {
rep(k, 0, w-1) {
rep(j, 0, a.w-1) {
r[i][j] += d[i][k] * a[k][j];
}
}
}
return r;
}
Matrix pow(ll t) const {
assert(h == w);
if(!t) return Matrix(h, h).unit();
if(t == 1) return *this;
Matrix r = pow(t >> 1);
r = r * r;
if(t&1) r = r*(*this);
return r;
}
};
void solve() {
Matrix<ll> A(2, 2);
cin >> A[0][0];
cin >> A[0][1];
cin >> A[1][0];
cin >> A[1][1];
Matrix<ll> ans = A.pow(3);
rep(i, 0, 1) {
rep(j, 0, 1) {
cout << ans[i][j] << " ";
}
cout << endl;
}
}
//string1 :S.at(N-1) :S.at(0)
//if(S.at(i) == 1 ← char1...?
// mod...?(´ω)
int main() {
ios::sync_with_stdio(false);
std::cin.tie(nullptr);
cout << fixed << setprecision(15);
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0