結果
問題 | No.2441 行列累乗 |
ユーザー | Aeren |
提出日時 | 2023-08-25 21:23:21 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,919 bytes |
コンパイル時間 | 3,345 ms |
コンパイル使用メモリ | 358,696 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-24 07:45:12 |
合計ジャッジ時間 | 4,019 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 1 ms
5,248 KB |
testcase_06 | AC | 1 ms
5,248 KB |
testcase_07 | AC | 2 ms
5,248 KB |
testcase_08 | AC | 1 ms
5,248 KB |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 1 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | AC | 2 ms
5,248 KB |
testcase_17 | AC | 2 ms
5,248 KB |
testcase_18 | AC | 1 ms
5,248 KB |
testcase_19 | AC | 2 ms
5,248 KB |
ソースコード
#include <x86intrin.h> #include <bits/stdc++.h> using namespace std; #if __cplusplus > 201703L #include <ranges> using namespace numbers; #endif // T must support +=, -=, *, *=, ==, and != template<class T, size_t N, size_t M> struct matrix_fixed{ using ring_t = T; using domain_t = array<T, M>; using range_t = array<T, N>; static constexpr int n = N, m = M; array<array<T, M>, N> data; array<T, M> &operator()(int i){ assert(0 <= i && i < n); return data[i]; } const array<T, M> &operator()(int i) const{ assert(0 <= i && i < n); return data[i]; } T &operator()(int i, int j){ assert(0 <= i && i < n && 0 <= j && j < m); return data[i][j]; } const T &operator()(int i, int j) const{ assert(0 <= i && i < n && 0 <= j && j < m); return data[i][j]; } bool operator==(const matrix_fixed &a) const{ assert(n == a.n && m == a.m); return data == a.data; } bool operator!=(const matrix_fixed &a) const{ assert(n == a.n && m == a.m); return data != a.data; } matrix_fixed &operator+=(const matrix_fixed &a){ assert(n == a.n && m == a.m); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a(i, j); return *this; } matrix_fixed operator+(const matrix_fixed &a) const{ assert(n == a.n && m == a.m); return matrix_fixed(*this) += a; } matrix_fixed &operator-=(const matrix_fixed &a){ assert(n == a.n && m == a.m); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a(i, j); return *this; } matrix_fixed operator-(const matrix_fixed &a) const{ assert(n == a.n && m == a.m); return matrix_fixed(*this) += a; } template<size_t N2, size_t M2> matrix_fixed<T, N, M2> operator*(const matrix_fixed<T, N2, M2> &a) const{ assert(m == a.n); int l = M2; matrix_fixed<T, N, M2> res; for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) for(auto k = 0; k < l; ++ k) res(i, k) += data[i][j] * a(j, k); return res; } template<size_t N2, size_t M2> matrix_fixed &operator*=(const matrix_fixed<T, N2, M2> &a){ return *this = *this * a; } matrix_fixed &operator*=(T c){ for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] *= c; return *this; } matrix_fixed operator*(T c) const{ return matrix_fixed(*this) *= c; } template<class U, typename enable_if<is_integral<U>::value>::type* = nullptr> matrix_fixed &inplace_power(U e){ assert(n == m && e >= 0); matrix_fixed res(1, 0); for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this; return *this = res; } template<class U> matrix_fixed power(U e) const{ return matrix_fixed(*this).inplace_power(e); } matrix_fixed<T, M, N> transposed() const{ matrix_fixed<T, M, N> res; for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res(j, i) = data[i][j]; return res; } matrix_fixed &transpose(){ return *this = transposed(); } // Multiply a column vector v on the right range_t operator*(const domain_t &v) const{ range_t res; res.fill(T(0)); for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[i] += data[i][j] * v[j]; return res; } // Assumes T is a field // find_inverse() must return optional<T> // O(n) find_inverse() calls along with O(n^3) operations on T T determinant(auto find_inverse) const{ assert(n == m); if(n == 0) return T(1); auto a = data; T res = T(1); for(auto j = 0; j < n; ++ j){ int pivot = -1; for(auto i = j; i < n; ++ i) if(a[i][j] != T(0)){ pivot = i; break; } if(!~pivot) return T(0); swap(a[j], a[pivot]); res *= a[j][j] * (j != pivot ? -1 : 1); auto invp = find_inverse(a[j][j]); assert(invp); T inv = *invp; for(auto i = j + 1; i < n; ++ i) if(i != j && a[i][j] != T(0)){ T d = a[i][j] * inv; for(auto jj = j; jj < n; ++ jj) a[i][jj] -= d * a[j][jj]; } } return res; } // Assumes T is a field // find_inverse() must return optional<T> // O(n) find_inverse() calls along with O(n^3) operations on T optional<matrix_fixed> inverse(auto find_inverse) const{ assert(n == m); if(n == 0) return *this; auto a = data; array<array<T, M>, N> res; for(auto i = 0; i < n; ++ i) res[i].fill(T(0)), res[i][i] = T(1); for(auto j = 0; j < n; ++ j){ int pivot = -1; for(auto i = j; i < n; ++ i) if(a[i][j] != T(0)){ pivot = i; break; } if(!~pivot) return {}; swap(a[j], a[pivot]), swap(res[j], res[pivot]); auto invp = find_inverse(a[j][j]); assert(invp); T inv = *invp; for(auto jj = 0; jj < n; ++ jj) a[j][jj] *= inv, res[j][jj] *= inv; for(auto i = 0; i < n; ++ i) if(i != j && a[i][j] != T(0)){ T d = a[i][j]; for(auto jj = 0; jj < n; ++ jj) a[i][jj] -= d * a[j][jj], res[i][jj] -= d * res[j][jj]; } } return matrix_fixed(n, n, res); } template<class output_stream> friend output_stream &operator<<(output_stream &out, const matrix_fixed &a){ out << "{"; for(auto i = 0; i < a.n; ++ i){ out << "{"; for(auto j = 0; j < a.m; ++ j){ out << a(i, j); if(j != a.m - 1) out << ", "; } out << "}"; if(i != a.n - 1) out << ", "; } return out << "}"; } matrix_fixed(): matrix_fixed(T(0), T(0)){ } matrix_fixed(const T &init_diagonal, const T &init_off_diagonal){ for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] = i == j ? init_diagonal : init_off_diagonal; } matrix_fixed(const array<array<T, M>, N> &arr): data(arr){ } static matrix_fixed additive_identity(){ return matrix_fixed(T(1), T(0)); } static matrix_fixed multiplicative_identity(){ return matrix_fixed(T(0), T(0)); } }; template<class T, size_t N, size_t M> matrix_fixed<T, N, M> operator*(T c, matrix_fixed<T, N, M> a){ for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) a(i, j) = c * a(i, j); return a; } // Multiply a row vector v on the left template<class T, size_t N, size_t M> matrix_fixed<T, N, M>::domain_t operator*(const typename matrix_fixed<T, N, M>::range_t &v, const matrix_fixed<T, N, M> &a){ typename matrix_fixed<T, N, M>::domain_t res; res.fill(T(0)); for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) res[j] += v[i] * a(i, j); return res; } int main(){ cin.tie(0)->sync_with_stdio(0); cin.exceptions(ios::badbit | ios::failbit); matrix_fixed<int, 2, 2> mat(2, 2); for(auto i = 0; i < 2; ++ i){ for(auto j = 0; j < 2; ++ j){ cin >> mat(i, j); } } mat = mat.power(3); for(auto i = 0; i < 2; ++ i){ for(auto j = 0; j < 2; ++ j){ cout << mat(i, j) << " "; } cout << "\n"; } return 0; } /* */ //////////////////////////////////////////////////////////////////////////////////////// // // // Coded by Aeren // // // ////////////////////////////////////////////////////////////////////////////////////////