結果
| 問題 | No.2443 特殊線形群の標準表現 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-08-25 21:38:48 |
| 言語 | C++17 (gcc 15.2.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 14,764 bytes |
| 記録 | |
| コンパイル時間 | 2,427 ms |
| コンパイル使用メモリ | 210,236 KB |
| 最終ジャッジ日時 | 2025-02-16 13:50:24 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 WA * 15 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
cerr << fixed << setprecision(15);
}
} io_setup;
constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;
template <typename Monoid>
struct Segment_Tree {
using M = typename Monoid::V;
int n, m;
vector<M> seg;
// f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
Segment_Tree(const vector<M> &v) : n(v.size()) {
m = 1;
while (m < n) m <<= 1;
seg.assign(2 * m, Monoid::id);
copy(begin(v), end(v), begin(seg) + m);
build();
}
Segment_Tree(int n, M x = Monoid::id) : Segment_Tree(vector<M>(n, x)) {}
void set(int i, const M &x) { seg[m + i] = x; }
void build() {
for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
void update(int i, const M &x, bool apply = false) {
seg[i + m] = apply ? Monoid::merge(seg[i + m], x) : x;
i += m;
while (i >>= 1) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
M query(int l, int r) const {
l = max(l, 0), r = min(r, n);
M L = Monoid::id, R = Monoid::id;
l += m, r += m;
while (l < r) {
if (l & 1) L = Monoid::merge(L, seg[l++]);
if (r & 1) R = Monoid::merge(seg[--r], R);
l >>= 1, r >>= 1;
}
return Monoid::merge(L, R);
}
M operator[](int i) const { return seg[m + i]; }
template <typename C>
int find_subtree(int i, const C &check, M &x, int type) const {
while (i < m) {
M nxt = type ? Monoid::merge(seg[2 * i + type], x) : Monoid::merge(x, seg[2 * i + type]);
if (check(nxt)) {
i = 2 * i + type;
} else {
x = nxt;
i = 2 * i + (type ^ 1);
}
}
return i - m;
}
// check(区間 [l,r] での演算結果) を満たす最小の r (存在しなければ n)
template <typename C>
int find_first(int l, const C &check) const {
M L = Monoid::id;
int a = l + m, b = 2 * m;
while (a < b) {
if (a & 1) {
M nxt = Monoid::merge(L, seg[a]);
if (check(nxt)) return find_subtree(a, check, L, 0);
L = nxt;
a++;
}
a >>= 1, b >>= 1;
}
return n;
}
// check((区間 [l,r) での演算結果)) を満たす最大の l (存在しなければ -1)
template <typename C>
int find_last(int r, const C &check) const {
M R = Monoid::id;
int a = m, b = r + m;
while (a < b) {
if ((b & 1) || a == 1) {
M nxt = Monoid::merge(seg[--b], R);
if (check(nxt)) return find_subtree(b, check, R, 1);
R = nxt;
}
a >>= 1, b >>= 1;
}
return -1;
}
};
struct Runtime_Mod_Int {
int x;
Runtime_Mod_Int() : x(0) {}
Runtime_Mod_Int(long long y) {
x = y % get_mod();
if (x < 0) x += get_mod();
}
static inline int &get_mod() {
static int mod = 0;
return mod;
}
static void set_mod(int md) { get_mod() = md; }
Runtime_Mod_Int &operator+=(const Runtime_Mod_Int &p) {
if ((x += p.x) >= get_mod()) x -= get_mod();
return *this;
}
Runtime_Mod_Int &operator-=(const Runtime_Mod_Int &p) {
if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
return *this;
}
Runtime_Mod_Int &operator*=(const Runtime_Mod_Int &p) {
x = (int)(1LL * x * p.x % get_mod());
return *this;
}
Runtime_Mod_Int &operator/=(const Runtime_Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Runtime_Mod_Int &operator++() { return *this += Runtime_Mod_Int(1); }
Runtime_Mod_Int operator++(int) {
Runtime_Mod_Int tmp = *this;
++*this;
return tmp;
}
Runtime_Mod_Int &operator--() { return *this -= Runtime_Mod_Int(1); }
Runtime_Mod_Int operator--(int) {
Runtime_Mod_Int tmp = *this;
--*this;
return tmp;
}
Runtime_Mod_Int operator-() const { return Runtime_Mod_Int(-x); }
Runtime_Mod_Int operator+(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) += p; }
Runtime_Mod_Int operator-(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) -= p; }
Runtime_Mod_Int operator*(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) *= p; }
Runtime_Mod_Int operator/(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) /= p; }
bool operator==(const Runtime_Mod_Int &p) const { return x == p.x; }
bool operator!=(const Runtime_Mod_Int &p) const { return x != p.x; }
Runtime_Mod_Int inverse() const {
assert(*this != Runtime_Mod_Int(0));
return pow(get_mod() - 2);
}
Runtime_Mod_Int pow(long long k) const {
Runtime_Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Runtime_Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Runtime_Mod_Int &p) {
long long a;
is >> a;
p = Runtime_Mod_Int(a);
return is;
}
};
using mint = Runtime_Mod_Int;
template <typename T>
struct Matrix {
vector<vector<T>> A;
int n, m;
Matrix(int n, int m) : A(n, vector<T>(m, 0)), n(n), m(m) {}
inline const vector<T> &operator[](int k) const { return A[k]; }
inline vector<T> &operator[](int k) { return A[k]; }
static Matrix I(int l) {
Matrix ret(l, l);
for (int i = 0; i < l; i++) ret[i][i] = 1;
return ret;
}
Matrix &operator*=(const Matrix &B) {
assert(m == B.n);
Matrix ret(n, B.m);
for (int i = 0; i < n; i++) {
for (int k = 0; k < m; k++) {
for (int j = 0; j < B.m; j++) ret[i][j] += A[i][k] * B[k][j];
}
}
swap(A, ret.A);
m = B.m;
return *this;
}
Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; }
Matrix pow(long long k) const {
assert(n == m);
Matrix now = *this, ret = I(n);
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
bool eq(const T &a, const T &b) const {
return a == b;
// return abs(a-b) <= EPS;
}
// 行基本変形を用いて簡約化を行い、(rank, det) の組を返す
pair<int, T> row_reduction(vector<T> &b) {
assert((int)b.size() == n);
if (n == 0) return make_pair(0, m > 0 ? 0 : 1);
int check = 0, rank = 0;
T det = (n == m ? 1 : 0);
for (int j = 0; j < m; j++) {
int pivot = check;
for (int i = check; i < n; i++) {
if (A[i][j] != 0) pivot = i;
// if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
}
if (check != pivot) det *= T(-1);
swap(A[check], A[pivot]), swap(b[check], b[pivot]);
if (eq(A[check][j], T(0))) {
det = T(0);
continue;
}
rank++;
det *= A[check][j];
T r = T(1) / A[check][j];
for (int k = j + 1; k < m; k++) A[check][k] *= r;
b[check] *= r;
A[check][j] = T(1);
for (int i = 0; i < n; i++) {
if (i == check) continue;
if (!eq(A[i][j], 0)) {
for (int k = j + 1; k < m; k++) A[i][k] -= A[i][j] * A[check][k];
b[i] -= A[i][j] * b[check];
}
A[i][j] = T(0);
}
if (++check == n) break;
}
return make_pair(rank, det);
}
pair<int, T> row_reduction() {
vector<T> b(n, T(0));
return row_reduction(b);
}
// 行基本変形を行い、逆行列を求める
pair<bool, Matrix> inverse() {
if (n != m) return make_pair(false, Matrix(0, 0));
if (n == 0) return make_pair(true, Matrix(0, 0));
Matrix ret = I(n);
for (int j = 0; j < n; j++) {
int pivot = j;
for (int i = j; i < n; i++) {
if (A[i][j] != 0) pivot = i;
// if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
}
swap(A[j], A[pivot]), swap(ret[j], ret[pivot]);
if (eq(A[j][j], T(0))) return make_pair(false, Matrix(0, 0));
T r = T(1) / A[j][j];
for (int k = j + 1; k < n; k++) A[j][k] *= r;
for (int k = 0; k < n; k++) ret[j][k] *= r;
A[j][j] = T(1);
for (int i = 0; i < n; i++) {
if (i == j) continue;
if (!eq(A[i][j], T(0))) {
for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k];
for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k];
}
A[i][j] = T(0);
}
}
return make_pair(true, ret);
}
// Ax = b の解の 1 つと解空間の基底の組を返す
vector<vector<T>> Gaussian_elimination(vector<T> b) {
row_reduction(b);
vector<vector<T>> ret;
vector<int> p(n, m);
vector<bool> is_zero(m, true);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (!eq(A[i][j], T(0))) {
p[i] = j;
break;
}
}
if (p[i] < m) {
is_zero[p[i]] = false;
} else if (!eq(b[i], T(0))) {
return {};
}
}
vector<T> x(m, T(0));
for (int i = 0; i < n; i++) {
if (p[i] < m) x[p[i]] = b[i];
}
ret.push_back(x);
for (int j = 0; j < m; j++) {
if (!is_zero[j]) continue;
x[j] = T(1);
for (int i = 0; i < n; i++) {
if (p[i] < m) x[p[i]] = -A[i][j];
}
ret.push_back(x);
x[j] = T(0);
}
return ret;
}
};
void solve() {
int N, M, T;
cin >> N >> M >> T;
mint::set_mod(M);
using mat = Matrix<mint>;
vector<mat> A(N, mat(2, 2));
rep(i, N) {
rep(j, 2) rep(k, 2) cin >> A[i][j][k]; //
}
vector<mat> P(N + 1, mat::I(2));
rep(i, N) P[i + 1] = P[i] * A[i];
vector<mat> Q(N + 1, mat::I(2));
rep(i, N) Q[i + 1] = A[i] * Q[i];
while (T--) {
int l, r;
mint x, y;
cin >> l >> r >> x >> y;
if (M == 1) {
cout << "0 0\n";
} else {
mat X(2, 1);
X[0][0] = x, X[1][0] = y;
X = Q[r] * Q[l].inverse().second * X;
cout << X[0][0] MM X[1][0] << '\n';
}
}
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}