結果
| 問題 |
No.2443 特殊線形群の標準表現
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-08-25 21:42:24 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 217 ms / 3,000 ms |
| コード長 | 19,755 bytes |
| コンパイル時間 | 4,716 ms |
| コンパイル使用メモリ | 367,088 KB |
| 実行使用メモリ | 8,936 KB |
| 最終ジャッジ日時 | 2024-12-24 08:18:38 |
| 合計ジャッジ時間 | 7,439 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
#include <x86intrin.h>
#include <bits/stdc++.h>
using namespace std;
#if __cplusplus > 201703L
#include <ranges>
using namespace numbers;
#endif
template<int id>
struct modular_unfixed_base{
static unsigned int _mod;
static unsigned long long _inverse_mod;
static unsigned int &mod(){
return _mod;
}
static void precalc_barrett(){
_inverse_mod = (unsigned long long)-1 / _mod + 1;
}
static void setup(unsigned int mod = 0){
if(!mod) cin >> mod;
_mod = mod;
assert(_mod >= 1);
precalc_barrett();
}
template<class T>
static vector<modular_unfixed_base> precalc_power(T base, int SZ){
vector<modular_unfixed_base> res(SZ + 1, 1);
for(auto i = 1; i <= SZ; ++ i) res[i] = res[i - 1] * base;
return res;
}
static vector<modular_unfixed_base> _INV;
static void precalc_inverse(int SZ){
if(_INV.empty()) _INV.assign(2, 1);
for(auto x = _INV.size(); x <= SZ; ++ x) _INV.push_back(_mod / x * -_INV[_mod % x]);
}
// _mod must be a prime
static modular_unfixed_base _primitive_root;
static modular_unfixed_base primitive_root(){
if(_primitive_root) return _primitive_root;
if(_mod == 2) return _primitive_root = 1;
if(_mod == 998244353) return _primitive_root = 3;
unsigned int divs[20] = {};
divs[0] = 2;
int cnt = 1;
unsigned int x = (_mod - 1) / 2;
while(x % 2 == 0) x /= 2;
for(auto i = 3; 1LL * i * i <= x; i += 2){
if(x % i == 0){
divs[cnt ++] = i;
while(x % i == 0) x /= i;
}
}
if(x > 1) divs[cnt ++] = x;
for(auto g = 2; ; ++ g){
bool ok = true;
for(auto i = 0; i < cnt; ++ i){
if((modular_unfixed_base(g).power((_mod - 1) / divs[i])) == 1){
ok = false;
break;
}
}
if(ok) return _primitive_root = g;
}
}
constexpr modular_unfixed_base(): data(){ }
modular_unfixed_base(const double &x){ data = normalize(llround(x)); }
modular_unfixed_base(const long double &x){ data = normalize(llround(x)); }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base(const T &x){ data = normalize(x); }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> static unsigned int normalize(const T &x){
if(_mod == 1) return 0;
assert(_inverse_mod);
int sign = x >= 0 ? 1 : -1;
unsigned int v = _mod <= sign * x ? sign * x - ((__uint128_t)(sign * x) * _inverse_mod >> 64) * _mod : sign * x;
if(v >= _mod) v += _mod;
if(sign == -1 && v) v = _mod - v;
return v;
}
const unsigned int &operator()() const{ return data; }
template<class T> operator T() const{ return data; }
modular_unfixed_base &operator+=(const modular_unfixed_base &otr){ if((data += otr.data) >= _mod) data -= _mod; return *this; }
modular_unfixed_base &operator-=(const modular_unfixed_base &otr){ if((data += _mod - otr.data) >= _mod) data -= _mod; return *this; }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base &operator+=(const T &otr){ return *this += modular_unfixed_base(otr); }
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base &operator-=(const T &otr){ return *this -= modular_unfixed_base(otr); }
modular_unfixed_base &operator++(){ return *this += 1; }
modular_unfixed_base &operator--(){ return *this += _mod - 1; }
modular_unfixed_base operator++(int){ modular_unfixed_base result(*this); *this += 1; return result; }
modular_unfixed_base operator--(int){ modular_unfixed_base result(*this); *this += _mod - 1; return result; }
modular_unfixed_base operator-() const{ return modular_unfixed_base(_mod - data); }
modular_unfixed_base &operator*=(const modular_unfixed_base &rhs){
data = normalize((unsigned long long)data * rhs.data);
return *this;
}
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr>
modular_unfixed_base &inplace_power(T e){
if(e < 0) *this = 1 / *this, e = -e;
modular_unfixed_base res = 1;
for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
return *this = res;
}
template<class T, typename enable_if<is_integral<T>::value>::type* = nullptr>
modular_unfixed_base power(T e) const{
return modular_unfixed_base(*this).inplace_power(e);
}
modular_unfixed_base &operator/=(const modular_unfixed_base &otr){
int a = otr.data, m = _mod, u = 0, v = 1;
if(a < _INV.size()) return *this *= _INV[a];
while(a){
int t = m / a;
m -= t * a; swap(a, m);
u -= t * v; swap(u, v);
}
assert(m == 1);
return *this *= u;
}
unsigned int data;
};
template<int id> unsigned int modular_unfixed_base<id>::_mod;
template<int id> unsigned long long modular_unfixed_base<id>::_inverse_mod;
template<int id> vector<modular_unfixed_base<id>> modular_unfixed_base<id>::_INV;
template<int id> modular_unfixed_base<id> modular_unfixed_base<id>::_primitive_root;
template<int id> bool operator==(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return lhs.data == rhs.data; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator==(const modular_unfixed_base<id> &lhs, T rhs){ return lhs == modular_unfixed_base<id>(rhs); }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator==(T lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) == rhs; }
template<int id> bool operator!=(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return !(lhs == rhs); }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator!=(const modular_unfixed_base<id> &lhs, T rhs){ return !(lhs == rhs); }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> bool operator!=(T lhs, const modular_unfixed_base<id> &rhs){ return !(lhs == rhs); }
template<int id> bool operator<(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return lhs.data < rhs.data; }
template<int id> bool operator>(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return lhs.data > rhs.data; }
template<int id> bool operator<=(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return lhs.data <= rhs.data; }
template<int id> bool operator>=(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return lhs.data >= rhs.data; }
template<int id> modular_unfixed_base<id> operator+(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) += rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator+(const modular_unfixed_base<id> &lhs, T rhs){ return modular_unfixed_base<id>(lhs) += rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator+(T lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) += rhs; }
template<int id> modular_unfixed_base<id> operator-(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) -= rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator-(const modular_unfixed_base<id> &lhs, T rhs){ return modular_unfixed_base<id>(lhs) -= rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator-(T lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) -= rhs; }
template<int id> modular_unfixed_base<id> operator*(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) *= rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator*(const modular_unfixed_base<id> &lhs, T rhs){ return modular_unfixed_base<id>(lhs) *= rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator*(T lhs, const modular_unfixed_base<id> &rhs){ return modular_unfixed_base<id>(lhs) *= rhs; }
template<int id> modular_unfixed_base<id> operator/(const modular_unfixed_base<id> &lhs, const modular_unfixed_base<id> &rhs) { return modular_unfixed_base<id>(lhs) /= rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator/(const modular_unfixed_base<id> &lhs, T rhs) { return modular_unfixed_base<id>(lhs) /= rhs; }
template<int id, class T, typename enable_if<is_integral<T>::value>::type* = nullptr> modular_unfixed_base<id> operator/(T lhs, const modular_unfixed_base<id> &rhs) { return modular_unfixed_base<id>(lhs) /= rhs; }
template<int id> istream &operator>>(istream &in, modular_unfixed_base<id> &number){
long long x;
in >> x;
number.data = modular_unfixed_base<id>::normalize(x);
return in;
}
// #define _PRINT_AS_FRACTION
template<int id> ostream &operator<<(ostream &out, const modular_unfixed_base<id> &number){
#ifdef LOCAL
#ifdef _PRINT_AS_FRACTION
out << number();
cerr << "(";
for(auto d = 1; ; ++ d){
if((number * d).data <= 1000000){
cerr << (number * d).data << "/" << d;
break;
}
else if((-number * d).data <= 1000000){
cerr << "-" << (-number * d).data << "/" << d;
break;
}
}
cerr << ")";
return out;
#else
return out << number();
#endif
#else
return out << number();
#endif
}
#undef _PRINT_AS_FRACTION
using modular = modular_unfixed_base<0>;
// T must support +=, -=, *, *=, ==, and !=
template<class T, size_t N, size_t M>
struct matrix_fixed{
using ring_t = T;
using domain_t = array<T, M>;
using range_t = array<T, N>;
static constexpr int n = N, m = M;
array<array<T, M>, N> data;
array<T, M> &operator()(int i){
assert(0 <= i && i < n);
return data[i];
}
const array<T, M> &operator()(int i) const{
assert(0 <= i && i < n);
return data[i];
}
T &operator()(int i, int j){
assert(0 <= i && i < n && 0 <= j && j < m);
return data[i][j];
}
const T &operator()(int i, int j) const{
assert(0 <= i && i < n && 0 <= j && j < m);
return data[i][j];
}
bool operator==(const matrix_fixed &a) const{
assert(n == a.n && m == a.m);
return data == a.data;
}
bool operator!=(const matrix_fixed &a) const{
assert(n == a.n && m == a.m);
return data != a.data;
}
matrix_fixed &operator+=(const matrix_fixed &a){
assert(n == a.n && m == a.m);
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a(i, j);
return *this;
}
matrix_fixed operator+(const matrix_fixed &a) const{
assert(n == a.n && m == a.m);
return matrix_fixed(*this) += a;
}
matrix_fixed &operator-=(const matrix_fixed &a){
assert(n == a.n && m == a.m);
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a(i, j);
return *this;
}
matrix_fixed operator-(const matrix_fixed &a) const{
assert(n == a.n && m == a.m);
return matrix_fixed(*this) += a;
}
template<size_t N2, size_t M2>
matrix_fixed<T, N, M2> operator*(const matrix_fixed<T, N2, M2> &a) const{
assert(m == a.n);
int l = M2;
matrix_fixed<T, N, M2> res;
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) for(auto k = 0; k < l; ++ k) res(i, k) += data[i][j] * a(j, k);
return res;
}
template<size_t N2, size_t M2>
matrix_fixed &operator*=(const matrix_fixed<T, N2, M2> &a){
return *this = *this * a;
}
matrix_fixed &operator*=(T c){
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] *= c;
return *this;
}
matrix_fixed operator*(T c) const{
return matrix_fixed(*this) *= c;
}
template<class U, typename enable_if<is_integral<U>::value>::type* = nullptr>
matrix_fixed &inplace_power(U e){
assert(n == m && e >= 0);
matrix_fixed res(1, 0);
for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
return *this = res;
}
template<class U>
matrix_fixed power(U e) const{
return matrix_fixed(*this).inplace_power(e);
}
matrix_fixed<T, M, N> transposed() const{
matrix_fixed<T, M, N> res;
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res(j, i) = data[i][j];
return res;
}
matrix_fixed &transpose(){
return *this = transposed();
}
// Multiply a column vector v on the right
range_t operator*(const domain_t &v) const{
range_t res;
res.fill(T(0));
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[i] += data[i][j] * v[j];
return res;
}
// Assumes T is a field
// find_inverse() must return optional<T>
// O(n) find_inverse() calls along with O(n^3) operations on T
T determinant(auto find_inverse) const{
assert(n == m);
if(n == 0) return T(1);
auto a = data;
T res = T(1);
for(auto j = 0; j < n; ++ j){
int pivot = -1;
for(auto i = j; i < n; ++ i) if(a[i][j] != T(0)){
pivot = i;
break;
}
if(!~pivot) return T(0);
swap(a[j], a[pivot]);
res *= a[j][j] * (j != pivot ? -1 : 1);
auto invp = find_inverse(a[j][j]);
assert(invp);
T inv = *invp;
for(auto i = j + 1; i < n; ++ i) if(i != j && a[i][j] != T(0)){
T d = a[i][j] * inv;
for(auto jj = j; jj < n; ++ jj) a[i][jj] -= d * a[j][jj];
}
}
return res;
}
// Assumes T is a field
// find_inverse() must return optional<T>
// O(n) find_inverse() calls along with O(n^3) operations on T
optional<matrix_fixed> inverse(auto find_inverse) const{
assert(n == m);
if(n == 0) return *this;
auto a = data;
array<array<T, M>, N> res;
for(auto i = 0; i < n; ++ i) res[i].fill(T(0)), res[i][i] = T(1);
for(auto j = 0; j < n; ++ j){
int pivot = -1;
for(auto i = j; i < n; ++ i) if(a[i][j] != T(0)){
pivot = i;
break;
}
if(!~pivot) return {};
swap(a[j], a[pivot]), swap(res[j], res[pivot]);
auto invp = find_inverse(a[j][j]);
assert(invp);
T inv = *invp;
for(auto jj = 0; jj < n; ++ jj) a[j][jj] *= inv, res[j][jj] *= inv;
for(auto i = 0; i < n; ++ i) if(i != j && a[i][j] != T(0)){
T d = a[i][j];
for(auto jj = 0; jj < n; ++ jj) a[i][jj] -= d * a[j][jj], res[i][jj] -= d * res[j][jj];
}
}
return matrix_fixed(n, n, res);
}
template<class output_stream>
friend output_stream &operator<<(output_stream &out, const matrix_fixed &a){
out << "{";
for(auto i = 0; i < a.n; ++ i){
out << "{";
for(auto j = 0; j < a.m; ++ j){
out << a(i, j);
if(j != a.m - 1) out << ", ";
}
out << "}";
if(i != a.n - 1) out << ", ";
}
return out << "}";
}
matrix_fixed(): matrix_fixed(T(0), T(0)){ }
matrix_fixed(const T &init_diagonal, const T &init_off_diagonal){
for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] = i == j ? init_diagonal : init_off_diagonal;
}
matrix_fixed(const array<array<T, M>, N> &arr): data(arr){ }
static matrix_fixed additive_identity(){
return matrix_fixed(T(1), T(0));
}
static matrix_fixed multiplicative_identity(){
return matrix_fixed(T(0), T(0));
}
};
template<class T, size_t N, size_t M>
matrix_fixed<T, N, M> operator*(T c, matrix_fixed<T, N, M> a){
for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) a(i, j) = c * a(i, j);
return a;
}
// Multiply a row vector v on the left
template<class T, size_t N, size_t M>
matrix_fixed<T, N, M>::domain_t operator*(const typename matrix_fixed<T, N, M>::range_t &v, const matrix_fixed<T, N, M> &a){
typename matrix_fixed<T, N, M>::domain_t res;
res.fill(T(0));
for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) res[j] += v[i] * a(i, j);
return res;
}
template<class T, class F>
struct segment_tree{
int n, size, log;
vector<T> data;
F TT; // monoid operation (always adjacent)
T T_id; // monoid identity
// O(n)
segment_tree(int n, F TT, T T_id): TT(TT), T_id(T_id){
init(n);
}
// O(n)
segment_tree(int n, T x, F TT, T T_id): TT(TT), T_id(T_id){
init(n, x);
}
// O(n)
segment_tree(const vector<T> &a, F TT, T T_id): TT(TT), T_id(T_id){
init(a);
}
segment_tree &operator=(const segment_tree &otr){
n = otr.n;
size = otr.size;
log = otr.log;
data = otr.data;
return *this;
}
// O(n)
void init(int n){
init(n, T_id);
}
// O(n)
void init(int n, T x){
this->n = n;
size = 1;
while(size < n) size <<= 1;
log = __lg(size);
data.assign(size << 1, T_id);
fill(data.begin() + size, data.begin() + size + n, x);
for(auto i = size - 1; i >= 1; -- i) refresh(i);
}
// O(n)
void init(const vector<T> &a){
n = (int)a.size();
size = 1;
while(size < n) size <<= 1;
log = __lg(size);
data.assign(size << 1, T_id);
copy(a.begin(), a.end(), data.begin() + size);
for(auto i = size - 1; i >= 1; -- i) refresh(i);
}
// O(1)
void refresh(int i){
data[i] = TT(data[i << 1], data[i << 1 | 1]);
}
// O(log(n))
void set(int p, T x){
assert(0 <= p && p < n);
data[p += size] = x;
for(auto i = 1; i <= log; ++ i) refresh(p >> i);
}
// O(log(n))
void update(int p, T x){
assert(0 <= p && p < n);
p += size;
data[p] = TT(data[p], x);
for(auto i = 1; i <= log; ++ i) refresh(p >> i);
}
// O(1)
T query(int p) const{
assert(0 <= p && p < n);
return data[p + size];
}
// O(log(n))
T query(int l, int r) const{
assert(0 <= l && l <= r && r <= n);
T res_left = T_id, res_right = T_id;
for(l += size, r += size; l < r; l >>= 1, r >>= 1){
if(l & 1) res_left = TT(res_left, data[l ++]);
if(r & 1) res_right = TT(data[-- r], res_right);
}
return TT(res_left, res_right);
}
// O(1)
T query_all() const{
return data[1];
}
// pred(sum[l, r)) is T, T, ..., T, F, F, ..., F
// Returns max r with T
// O(log(n))
int max_pref(int l, auto pred) const{
assert(0 <= l && l <= n && pred(T_id));
if(l == n) return n;
l += size;
T sm = T_id;
do{
while(~l & 1) l >>= 1;
if(!pred(TT(sm, data[l]))){
while(l < size){
l = l << 1;
if(pred(TT(sm, data[l]))) sm = TT(sm, data[l ++]);
}
return l - size;
}
sm = TT(sm, data[l ++]);
}while((l & -l) != l);
return n;
}
// pred(sum[l, r)) is F, F, ..., F, T, T, ..., T
// Returns min l with T
// O(log(n))
int min_suff(int r, auto pred) const{
assert(0 <= r && r <= n && pred(T_id));
if(r == 0) return 0;
r += size;
T sm = T_id;
do{
-- r;
while(r > 1 && r & 1) r >>= 1;
if(!pred(TT(data[r], sm))){
while(r < size){
r = r << 1 | 1;
if(pred(TT(data[r], sm))) sm = TT(data[r --], sm);
}
return r + 1 - size;
}
sm = TT(data[r], sm);
}while((r & -r) != r);
return 0;
}
template<class output_stream>
friend output_stream &operator<<(output_stream &out, const segment_tree<T, F> &seg){
out << "[";
for(auto i = 0; i < seg.n; ++ i){
out << seg.query(i);
if(i != seg.n - 1) out << ", ";
}
return out << ']';
}
};
int main(){
cin.tie(0)->sync_with_stdio(0);
cin.exceptions(ios::badbit | ios::failbit);
int n, qn;
cin >> n;
modular::setup();
cin >> qn;
vector<matrix_fixed<modular, 2, 2>> init(n);
for(auto i = 0; i < n; ++ i){
for(auto x = 0; x < 2; ++ x){
for(auto y = 0; y < 2; ++ y){
cin >> init[i](x, y);
}
}
}
segment_tree seg(init, [&](const auto &x, const auto &y){ return y * x; }, matrix_fixed<modular, 2, 2>(1, 0));
for(auto qi = 0; qi < qn; ++ qi){
int ql, qr;
modular x, y;
cin >> ql >> qr >> x >> y;
auto res = seg.query(ql, qr) * array{x, y};
cout << res[0] << " " << res[1] << "\n";
}
return 0;
}
/*
*/
////////////////////////////////////////////////////////////////////////////////////////
// //
// Coded by Aeren //
// //
////////////////////////////////////////////////////////////////////////////////////////