結果
問題 | No.2447 行列累乗根 |
ユーザー |
![]() |
提出日時 | 2023-08-25 22:27:30 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 17,900 bytes |
コンパイル時間 | 2,301 ms |
コンパイル使用メモリ | 187,436 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-24 09:43:59 |
合計ジャッジ時間 | 9,881 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 11 WA * 17 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <deque>#include <forward_list>#include <fstream>#include <functional>#include <iomanip>#include <ios>#include <iostream>#include <limits>#include <list>#include <map>#include <memory>#include <numeric>#include <optional>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <string>#include <tuple>#include <type_traits>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>using namespace std;using lint = long long;using pint = pair<int, int>;using plint = pair<lint, lint>;struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;#define ALL(x) (x).begin(), (x).end()#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)#define REP(i, n) FOR(i,0,n)#define IREP(i, n) IFOR(i,0,n)template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }const std::vector<std::pair<int, int>> grid_dxs{{1, 0}, {-1, 0}, {0, 1}, {0, -1}};int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }template <class T1, class T2> T1 floor_div(T1 num, T2 den) { return (num > 0 ? num / den : -((-num + den - 1) / den)); }template <class T1, class T2> std::pair<T1, T2> operator+(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first + r.first, l.second + r.second); }template <class T1, class T2> std::pair<T1, T2> operator-(const std::pair<T1, T2> &l, const std::pair<T1, T2> &r) { return std::make_pair(l.first - r.first, l.second - r.second); }template <class T> std::vector<T> sort_unique(std::vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }template <class T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }template <class T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }template <class IStream, class T> IStream &operator>>(IStream &is, std::vector<T> &vec) { for (auto &v : vec) is >> v; return is; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec);template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr);template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const pair<T, U> &pa);template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec);template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec);template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa);template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp);template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp);template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl);template <class OStream, class T> OStream &operator<<(OStream &os, const std::vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T, size_t sz> OStream &operator<<(OStream &os, const std::array<T, sz> &arr) { os << '['; for (auto v : arr) os << v<< ','; os << ']'; return os; }template <class... T> std::istream &operator>>(std::istream &is, std::tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);},tpl); return is; }template <class OStream, class... T> OStream &operator<<(OStream &os, const std::tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) {((os << args << ','), ...);}, tpl); return os << ')'; }template <class OStream, class T, class TH> OStream &operator<<(OStream &os, const std::unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os<< v << ','; os << '}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os <<']'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}';return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os <<'}'; return os; }template <class OStream, class T> OStream &operator<<(OStream &os, const std::unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v <<','; os << '}'; return os; }template <class OStream, class T, class U> OStream &operator<<(OStream &os, const std::pair<T, U> &pa) { return os << '(' << pa.first << ',' << pa.second << ')'; }template <class OStream, class TK, class TV> OStream &operator<<(OStream &os, const std::map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }template <class OStream, class TK, class TV, class TH> OStream &operator<<(OStream &os, const std::unordered_map<TK, TV, TH> &mp) { os << '{'; for(auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }#ifdef HITONANODE_LOCALconst string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";#define dbg(x) std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET<< std::endl#define dbgif(cond, x) ((cond) ? std::cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " <<__FILE__ << COLOR_RESET << std::endl : std::cerr)#else#define dbg(x) ((void)0)#define dbgif(cond, x) ((void)0)#endif// Solve ax^2 + bx + c = 0.// retval: (# of solutions (-1 == inf.), solutions(ascending order))// Verify: <https://yukicoder.me/problems/no/955> <https://atcoder.jp/contests/tricky/tasks/tricky_2>template <typename Float>std::pair<int, std::vector<Float>> quadratic_solver(Float A, Float B, Float C) {if (B < 0) A = -A, B = -B, C = -C;if (A == 0) {if (B == 0) {if (C == 0)return std::make_pair(-1, std::vector<Float>{}); // all real numberselsereturn std::make_pair(0, std::vector<Float>{}); // no solution} elsereturn std::make_pair(1, std::vector<Float>{-C / B});}Float D = B * B - 4 * A * C;if (D < 0) return std::make_pair(0, std::vector<Float>{});if (D == 0) return std::make_pair(1, std::vector<Float>{-B / (2 * A)});Float ret1 = (-B - sqrt(D)) / (2 * A), ret2 = C / A / ret1;if (ret1 > ret2) std::swap(ret1, ret2);return std::make_pair(2, std::vector<Float>{ret1, ret2});}double ssq(double x) {if (x >= 0) return cbrt(x);return -cbrt(-x);}#include <algorithm>#include <cassert>#include <cmath>#include <iterator>#include <type_traits>#include <utility>#include <vector>namespace matrix_ {struct has_id_method_impl {template <class T_> static auto check(T_ *) -> decltype(T_::id(), std::true_type());template <class T_> static auto check(...) -> std::false_type;};template <class T_> struct has_id : decltype(has_id_method_impl::check<T_>(nullptr)) {};} // namespace matrix_template <typename T> struct matrix {int H, W;std::vector<T> elem;typename std::vector<T>::iterator operator[](int i) { return elem.begin() + i * W; }inline T &at(int i, int j) { return elem[i * W + j]; }inline T get(int i, int j) const { return elem[i * W + j]; }int height() const { return H; }int width() const { return W; }std::vector<std::vector<T>> vecvec() const {std::vector<std::vector<T>> ret(H);for (int i = 0; i < H; i++) {std::copy(elem.begin() + i * W, elem.begin() + (i + 1) * W, std::back_inserter(ret[i]));}return ret;}operator std::vector<std::vector<T>>() const { return vecvec(); }matrix() = default;matrix(int H, int W) : H(H), W(W), elem(H * W) {}matrix(const std::vector<std::vector<T>> &d) : H(d.size()), W(d.size() ? d[0].size() : 0) {for (auto &raw : d) std::copy(raw.begin(), raw.end(), std::back_inserter(elem));}template <typename T2, typename std::enable_if<matrix_::has_id<T2>::value>::type * = nullptr>static T2 _T_id() {return T2::id();}template <typename T2, typename std::enable_if<!matrix_::has_id<T2>::value>::type * = nullptr>static T2 _T_id() {return T2(1);}static matrix Identity(int N) {matrix ret(N, N);for (int i = 0; i < N; i++) ret.at(i, i) = _T_id<T>();return ret;}matrix operator-() const {matrix ret(H, W);for (int i = 0; i < H * W; i++) ret.elem[i] = -elem[i];return ret;}matrix operator*(const T &v) const {matrix ret = *this;for (auto &x : ret.elem) x *= v;return ret;}matrix operator/(const T &v) const {matrix ret = *this;const T vinv = _T_id<T>() / v;for (auto &x : ret.elem) x *= vinv;return ret;}matrix operator+(const matrix &r) const {matrix ret = *this;for (int i = 0; i < H * W; i++) ret.elem[i] += r.elem[i];return ret;}matrix operator-(const matrix &r) const {matrix ret = *this;for (int i = 0; i < H * W; i++) ret.elem[i] -= r.elem[i];return ret;}matrix operator*(const matrix &r) const {matrix ret(H, r.W);for (int i = 0; i < H; i++) {for (int k = 0; k < W; k++) {for (int j = 0; j < r.W; j++) ret.at(i, j) += this->get(i, k) * r.get(k, j);}}return ret;}matrix &operator*=(const T &v) { return *this = *this * v; }matrix &operator/=(const T &v) { return *this = *this / v; }matrix &operator+=(const matrix &r) { return *this = *this + r; }matrix &operator-=(const matrix &r) { return *this = *this - r; }matrix &operator*=(const matrix &r) { return *this = *this * r; }bool operator==(const matrix &r) const { return H == r.H and W == r.W and elem == r.elem; }bool operator!=(const matrix &r) const { return H != r.H or W != r.W or elem != r.elem; }bool operator<(const matrix &r) const { return elem < r.elem; }matrix pow(int64_t n) const {matrix ret = Identity(H);bool ret_is_id = true;if (n == 0) return ret;for (int i = 63 - __builtin_clzll(n); i >= 0; i--) {if (!ret_is_id) ret *= ret;if ((n >> i) & 1) ret *= (*this), ret_is_id = false;}return ret;}std::vector<T> pow_vec(int64_t n, std::vector<T> vec) const {matrix x = *this;while (n) {if (n & 1) vec = x * vec;x *= x;n >>= 1;}return vec;};matrix transpose() const {matrix ret(W, H);for (int i = 0; i < H; i++) {for (int j = 0; j < W; j++) ret.at(j, i) = this->get(i, j);}return ret;}// Gauss-Jordan elimination// - Require inverse for every non-zero element// - Complexity: O(H^2 W)template <typename T2, typename std::enable_if<std::is_floating_point<T2>::value>::type * = nullptr>static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {int piv = -1;for (int j = h; j < mtr.H; j++) {if (mtr.get(j, c) and (piv < 0 or std::abs(mtr.get(j, c)) > std::abs(mtr.get(piv, c))))piv = j;}return piv;}template <typename T2, typename std::enable_if<!std::is_floating_point<T2>::value>::type * = nullptr>static int choose_pivot(const matrix<T2> &mtr, int h, int c) noexcept {for (int j = h; j < mtr.H; j++) {if (mtr.get(j, c) != T2()) return j;}return -1;}matrix gauss_jordan() const {int c = 0;matrix mtr(*this);std::vector<int> ws;ws.reserve(W);for (int h = 0; h < H; h++) {if (c == W) break;int piv = choose_pivot(mtr, h, c);if (piv == -1) {c++;h--;continue;}if (h != piv) {for (int w = 0; w < W; w++) {std::swap(mtr[piv][w], mtr[h][w]);mtr.at(piv, w) *= -_T_id<T>(); // To preserve sign of determinant}}ws.clear();for (int w = c; w < W; w++) {if (mtr.at(h, w) != T()) ws.emplace_back(w);}const T hcinv = _T_id<T>() / mtr.at(h, c);for (int hh = 0; hh < H; hh++)if (hh != h) {const T coeff = mtr.at(hh, c) * hcinv;for (auto w : ws) mtr.at(hh, w) -= mtr.at(h, w) * coeff;mtr.at(hh, c) = T();}c++;}return mtr;}int rank_of_gauss_jordan() const {for (int i = H * W - 1; i >= 0; i--) {if (elem[i] != 0) return i / W + 1;}return 0;}int rank() const { return gauss_jordan().rank_of_gauss_jordan(); }T determinant_of_upper_triangle() const {T ret = _T_id<T>();for (int i = 0; i < H; i++) ret *= get(i, i);return ret;}int inverse() {assert(H == W);std::vector<std::vector<T>> ret = Identity(H), tmp = *this;int rank = 0;for (int i = 0; i < H; i++) {int ti = i;while (ti < H and tmp[ti][i] == T()) ti++;if (ti == H) {continue;} else {rank++;}ret[i].swap(ret[ti]), tmp[i].swap(tmp[ti]);T inv = _T_id<T>() / tmp[i][i];for (int j = 0; j < W; j++) ret[i][j] *= inv;for (int j = i + 1; j < W; j++) tmp[i][j] *= inv;for (int h = 0; h < H; h++) {if (i == h) continue;const T c = -tmp[h][i];for (int j = 0; j < W; j++) ret[h][j] += ret[i][j] * c;for (int j = i + 1; j < W; j++) tmp[h][j] += tmp[i][j] * c;}}*this = ret;return rank;}friend std::vector<T> operator*(const matrix &m, const std::vector<T> &v) {assert(m.W == int(v.size()));std::vector<T> ret(m.H);for (int i = 0; i < m.H; i++) {for (int j = 0; j < m.W; j++) ret[i] += m.get(i, j) * v[j];}return ret;}friend std::vector<T> operator*(const std::vector<T> &v, const matrix &m) {assert(int(v.size()) == m.H);std::vector<T> ret(m.W);for (int i = 0; i < m.H; i++) {for (int j = 0; j < m.W; j++) ret[j] += v[i] * m.get(i, j);}return ret;}std::vector<T> prod(const std::vector<T> &v) const { return (*this) * v; }std::vector<T> prod_left(const std::vector<T> &v) const { return v * (*this); }template <class OStream> friend OStream &operator<<(OStream &os, const matrix &x) {os << "[(" << x.H << " * " << x.W << " matrix)";os << "\n[column sums: ";for (int j = 0; j < x.W; j++) {T s = T();for (int i = 0; i < x.H; i++) s += x.get(i, j);os << s << ",";}os << "]";for (int i = 0; i < x.H; i++) {os << "\n[";for (int j = 0; j < x.W; j++) os << x.get(i, j) << ",";os << "]";}os << "]\n";return os;}template <class IStream> friend IStream &operator>>(IStream &is, matrix &x) {for (auto &v : x.elem) is >> v;return is;}};void solve() {double a, b, c, d;cin >> a >> b >> c >> d;assert(b == c);matrix<double> ret(2, 2);if (b) {auto [n, ans] = quadratic_solver(b, a - d, -b);dbg(n);dbg(ans);assert(n == 2);double x0 = 1, x1 = 1;double y0 = ans[0], y1 = ans[1];double l0 = x0 * a + y0 * b;double l1 = x1 * a + y1 * b;{double n0 = hypot(x0, y0);x0 /= n0, y0 /= n0;double n1 = hypot(x1, y1);x1 /= n1, y1 /= n1;}l0 = ssq(l0);l1 = ssq(l1);matrix<double> A(2, 2), B(2, 2), C(2, 2);A[0][0] = x0, A[0][1] = y0;A[1][0] = x1, A[1][1] = y1;B[0][0] = l0, B[1][1] = l1;C[0][0] = x0, C[0][1] = x1;C[1][0] = y0, C[1][1] = y1;ret = A * B * C;} else {ret[0][0] = ssq(a);ret[1][1] = ssq(d);}printf("%1.5f %1.5f\n", ret[0][0], ret[0][1]);printf("%1.5f %1.5f\n", ret[1][0], ret[1][1]);}int main() {int T;cin >> T;while (T--) solve();}