結果
問題 | No.2444 一次変換と体積 |
ユーザー | tonegawa |
提出日時 | 2023-08-25 22:33:52 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 26,059 bytes |
コンパイル時間 | 1,958 ms |
コンパイル使用メモリ | 151,052 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-06 17:12:23 |
合計ジャッジ時間 | 2,724 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | WA | - |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | WA | - |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | AC | 2 ms
5,376 KB |
ソースコード
#line 1 ".lib/template.hpp" #include <iostream> #include <string> #include <vector> #include <array> #include <tuple> #include <stack> #include <queue> #include <deque> #include <algorithm> #include <set> #include <map> #include <unordered_set> #include <unordered_map> #include <bitset> #include <cmath> #include <functional> #include <cassert> #include <climits> #include <iomanip> #include <numeric> #include <memory> #include <random> #include <thread> #include <chrono> #define allof(obj) (obj).begin(), (obj).end() #define range(i, l, r) for(int i=l;i<r;i++) #define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S) #define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit)) #define bit_kth(i, k) ((i >> k)&1) #define bit_highest(i) (i?63-__builtin_clzll(i):-1) #define bit_lowest(i) (i?__builtin_ctzll(i):-1) #define sleepms(t) std::this_thread::sleep_for(std::chrono::milliseconds(t)) using ll = long long; using ld = long double; using ul = uint64_t; using pi = std::pair<int, int>; using pl = std::pair<ll, ll>; using namespace std; template<typename F, typename S> std::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){ dest << p.first << ' ' << p.second; return dest; } template<typename T> std::ostream &operator<<(std::ostream &dest, const std::vector<std::vector<T>> &v){ int sz = v.size(); if(sz==0) return dest; for(int i=0;i<sz;i++){ int m = v[i].size(); for(int j=0;j<m;j++) dest << v[i][j] << (i!=sz-1&&j==m-1?'\n':' '); } return dest; } template<typename T> std::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){ int sz = v.size(); if(sz==0) return dest; for(int i=0;i<sz-1;i++) dest << v[i] << ' '; dest << v[sz-1]; return dest; } template<typename T, size_t sz> std::ostream &operator<<(std::ostream &dest, const std::array<T, sz> &v){ if(sz==0) return dest; for(int i=0;i<sz-1;i++) dest << v[i] << ' '; dest << v[sz-1]; return dest; } template<typename T> std::ostream &operator<<(std::ostream &dest, const std::set<T> &v){ for(auto itr=v.begin();itr!=v.end();){ dest << *itr; itr++; if(itr!=v.end()) dest << ' '; } return dest; } template<typename T, typename E> std::ostream &operator<<(std::ostream &dest, const std::map<T, E> &v){ for(auto itr=v.begin();itr!=v.end();){ dest << '(' << itr->first << ", " << itr->second << ')'; itr++; if(itr!=v.end()) dest << '\n'; } return dest; } template<typename T> vector<T> make_vec(size_t sz, T val){return std::vector<T>(sz, val);} template<typename T, typename... Tail> auto make_vec(size_t sz, Tail ...tail){ return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...)); } template<typename T> vector<T> read_vec(size_t sz){ std::vector<T> v(sz); for(int i=0;i<(int)sz;i++) std::cin >> v[i]; return v; } template<typename T, typename... Tail> auto read_vec(size_t sz, Tail ...tail){ auto v = std::vector<decltype(read_vec<T>(tail...))>(sz); for(int i=0;i<(int)sz;i++) v[i] = read_vec<T>(tail...); return v; } void io_init(){ std::cin.tie(nullptr); std::ios::sync_with_stdio(false); } #line 1 ".lib/math/mod.hpp" #line 6 ".lib/math/mod.hpp" #include <type_traits> #line 8 ".lib/math/mod.hpp" #include <ostream> #line 1 ".lib/math/minior/mod_base.hpp" #line 4 ".lib/math/minior/mod_base.hpp" // @param m `1 <= m` constexpr long long safe_mod(long long x, long long m){ x %= m; if (x < 0) x += m; return x; } struct barrett{ unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1){} unsigned int umod()const{return _m;} unsigned int mul(unsigned int a, unsigned int b)const{ unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z) * im) >> 64); #endif unsigned long long y = x * _m; return (unsigned int)(z - y + (z < y ? _m : 0)); } }; // @param n `0 <= n` // @param m `1 <= m` constexpr long long pow_mod_constexpr(long long x, long long n, int m){ if(m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while(n){ if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for(long long a : bases){ long long t = d; long long y = pow_mod_constexpr(a, t, n); while(t != n - 1 && y != 1 && y != n - 1){ y = y * y % n; t <<= 1; } if(y != n - 1 && t % 2 == 0){ return false; } } return true; } template<int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr int primitive_root_constexpr(int m){ if(m == 2) return 1; if(m == 167772161) return 3; if(m == 469762049) return 3; if(m == 754974721) return 11; if(m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for(int i = 3; (long long)(i)*i <= x; i += 2){ if(x % i == 0){ divs[cnt++] = i; while(x % i == 0){ x /= i; } } } if(x > 1) divs[cnt++] = x; for(int g = 2;; g++){ bool ok = true; for(int i = 0; i < cnt; i++){ if(pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1){ ok = false; break; } } if(ok)return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); int ceil_pow2(int n){ int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } int bsf(unsigned int n){ return __builtin_ctz(n); } // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b){ a = safe_mod(a, b); if(a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t){ long long u = s / t; s -= t * u; m0 -= m1 * u; auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if(m0 < 0) m0 += b / s; return {s, m0}; } #line 13 ".lib/math/mod.hpp" template<int m> long long modpow(long long a, long long b){ assert(0 <= b); assert(0 < m); a = safe_mod(a, m); long long ret = 1; while(b){ if(b & 1) ret = (ret * a) % m; a = (a * a) % m; b >>= 1; } return ret; } // @param 0 <= b, 0 < m long long modpow(long long a, long long b, int m){ assert(0 <= b); assert(0 < m); a = safe_mod(a, m); long long ret = 1; while(b){ if(b & 1) ret = (ret * a) % m; a = (a * a) % m; b >>= 1; } return ret; } struct modint_base {}; struct static_modint_base : modint_base {}; template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : static_modint_base{ using mint = static_modint; public: static constexpr int mod(){return m;} static mint raw(int v) { mint x; x._v = v; return x; } static_modint(): _v(0){} template <class T> static_modint(T v){ long long x = v % (long long)umod(); if (x < 0) x += umod(); _v = x; } unsigned int val()const{return _v;} mint& operator++(){ _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--(){ if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int){ mint result = *this; ++*this; return result; } mint operator--(int){ mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs){ _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs){ _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs){ unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();} mint operator+()const{return *this;} mint operator-()const{return mint() - *this;} mint pow(long long n)const{ assert(0 <= n); mint x = *this, r = 1; while(n){ if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv()const{ if(prime){ assert(_v); return pow(umod() - 2); }else{ auto eg = inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;} friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;} friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;} friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;} friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;} friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;} private: unsigned int _v; static constexpr unsigned int umod(){return m;} static constexpr bool prime = is_prime<m>; }; template<int id> struct dynamic_modint : modint_base{ using mint = dynamic_modint; public: static int mod(){return (int)(bt.umod());} static void set_mod(int m){ assert(1 <= m); bt = barrett(m); } static mint raw(int v){ mint x; x._v = v; return x; } dynamic_modint(): _v(0){} template <class T> dynamic_modint(T v){ long long x = v % (long long)(mod()); if (x < 0) x += mod(); _v = x; } unsigned int val()const{return _v;} mint& operator++(){ _v++; if(_v == umod()) _v = 0; return *this; } mint& operator--(){ if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int){ mint result = *this; ++*this; return result; } mint operator--(int){ mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs){ _v += rhs._v; if(_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs){ _v += mod() - rhs._v; if(_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs){ _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs){return *this = *this * rhs.inv();} mint operator+()const{return *this;} mint operator-()const{return mint() - *this;} mint pow(long long n)const{ assert(0 <= n); mint x = *this, r = 1; while(n){ if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv()const{ auto eg = inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs){return mint(lhs) += rhs;} friend mint operator-(const mint& lhs, const mint& rhs){return mint(lhs) -= rhs;} friend mint operator*(const mint& lhs, const mint& rhs){return mint(lhs) *= rhs;} friend mint operator/(const mint& lhs, const mint& rhs){return mint(lhs) /= rhs;} friend bool operator==(const mint& lhs, const mint& rhs){return lhs._v == rhs._v;} friend bool operator!=(const mint& lhs, const mint& rhs){return lhs._v != rhs._v;} private: unsigned int _v; static barrett bt; static unsigned int umod(){return bt.umod();} }; template <int id> barrett dynamic_modint<id>::bt(998244353); using modint = dynamic_modint<-1>; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; template <class T> using is_static_modint = std::is_base_of<static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; template<int m> std::ostream &operator<<(std::ostream &dest, const static_modint<m> &a){ dest << a.val(); return dest; } template<int id> std::ostream &operator<<(std::ostream &dest, const dynamic_modint<id> &a){ dest << a.val(); return dest; } // 0 <= n < m <= int_max // 前処理 O(n + log(m)) // 各種計算 O(1) // 変数 <= n template<typename mint, is_modint<mint>* = nullptr> struct modcomb{ private: int n; std::vector<mint> f, i, fi; void init(int _n){ assert(0 <= _n && _n < mint::mod()); if(_n < f.size()) return; n = _n; f.resize(n + 1), i.resize(n + 1), fi.resize(n + 1); f[0] = fi[0] = mint(1); if(n) f[1] = fi[1] = i[1] = mint(1); for(int j = 2; j <= n; j++) f[j] = f[j - 1] * j; fi[n] = f[n].inv(); for(int j = n; j >= 2; j--){ fi[j - 1] = fi[j] * j; i[j] = f[j - 1] * fi[j]; } } public: modcomb(): n(-1){} modcomb(int _n){ init(_n); } void recalc(int _n){ init(std::min(mint::mod() - 1, 1 << ceil_pow2(_n))); } mint comb(int a, int b){ if((a < 0) || (b < 0) || (a < b)) return 0; return f[a] * fi[a - b] * fi[b]; } mint perm(int a, int b){ if((a < 0) || (b < 0) || (a < b)) return 0; return f[a] * fi[a - b]; } mint fac(int x){ assert(0 <= x && x <= n); return f[x]; } mint inv(int x){ assert(0 < x && x <= n); return i[x]; } mint finv(int x){ assert(0 <= x && x <= n); return fi[x]; } }; template<typename mint, is_modint<mint>* = nullptr> struct modpow_table{ std::vector<mint> v; // x^maxkまで計算できる modpow_table(){} void init(int x, int maxk){ v.resize(maxk + 1); v[0] = 1; for(int i = 1; i <= maxk; i++) v[i] = v[i - 1] * x; } mint pow(int k){ assert(0 <= k && k < v.size()); return v[k]; } }; #line 1 ".lib/math/matrix/matrix_mod.hpp" #line 5 ".lib/math/matrix/matrix_mod.hpp" template<typename mint> struct matrix_mod{ int n, m; using _mint = mint; private: using vec = std::vector<mint>; using matrix = matrix_mod<mint>; // n × k 行列と k × m 行列の積(n × m行列) // K == 0だと壊れる static matrix __mul_mat(const matrix &vl, const matrix &vr){ int N = vl.n, K = vl.m, M = vr.m; assert(K == vr.n); assert(K); if(N == 0) return matrix(0, M); if(M == 0) return matrix(N, 0); auto vr_t = vr.t(); matrix ret(N, M, 0); for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ __int128_t S = 0; for(int k = 0; k < K; k++){ S += (long long)vl.val[i][k].val() * vr_t[j][k].val(); } ret[i][j] = S % mint::mod(); } } return ret; } // n × m 行列と n × m 行列の和(n × m行列) static void __add_mat_inplace(matrix &vl, const matrix &vr){ assert(vl.n == vr.n && vl.m == vr.m); int N = vl.n, M = vl.m; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ vl[i][j] += vr[i][j]; } } } // n × m 行列と n × m 行列の差(n × m行列) static void __sub_mat_inplace(matrix &vl, const matrix &vr){ assert(vl.n == vr.n && vl.m == vr.m); int N = vl.n, M = vl.m; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ vl[i][j] -= vr[i][j]; } } } static void __mul_val_inplace(matrix &vl, mint vr){ int N = vl.n, M = vl.m; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ vl[i][j] *= vr; } } } static void __add_val_inplace(matrix &vl, mint vr){ int N = vl.n, M = vl.m; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ vl[i][j] += vr; } } } static void __sub_val_inplace(matrix &vl, mint vr){ int N = vl.n, M = vl.m; for(int i = 0; i < N; i++){ for(int j = 0; j < M; j++){ vl[i][j] -= vr; } } } std::vector<vec> val; public: matrix_mod(): n(0), m(0){} matrix_mod(int _n, int _m, mint x = mint(0)) : n(_n), m(_m), val(_n, vec(_m, x)){} matrix_mod(const matrix_mod &v) : n(v.n), m(v.m), val(v.val){} matrix_mod(const vec &v): n(1), m(v.size()), val(1, vec(v.size())){val[0] = v;} matrix_mod(const std::vector<vec> &v): n(v.size()), m(v[0].size()), val(v){} matrix_mod operator + (const matrix_mod &vr){matrix_mod tmp(*this); return tmp += vr;} matrix_mod operator - (const matrix_mod &vr){matrix_mod tmp(*this); return tmp -= vr;} matrix_mod operator * (const matrix_mod &vr){return __mul_mat(*this, vr);} matrix_mod operator ^ (const long long vr){return pow(vr);} matrix_mod operator * (const mint vr){matrix_mod tmp(*this); return tmp *= vr;} matrix_mod operator += (const matrix_mod &vr){__add_mat_inplace(*this, vr); return *this;} matrix_mod operator -= (const matrix_mod &vr){__sub_mat_inplace(*this, vr); return *this;} matrix_mod operator *= (const matrix_mod &vr){return (*this) = __mul_mat(*this, vr);} matrix_mod operator ^= (const long long vr){return (*this) = pow(vr);} matrix_mod operator *= (const mint vr){__mul_val_inplace(*this, vr); return *this;} vec& operator [] (const int i){return val[i];} // n次の単位行列 static matrix_mod eye(int n){ matrix_mod ret(n, n, 0); for(int i = 0; i < n; i++) ret[i][i] = mint(1); return ret; } void print()const{ for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ std::cout << val[i][j] << (j == m - 1 ? '\n' : ' '); } } } matrix_mod pow(long long k){ assert(n && m && n == m); // 正方行列でなければならない matrix_mod ret = eye(n); // k == 0の場合単位行列を返す matrix_mod m(*this); while(k){ if(k & 1) ret *= m; m *= m; k >>= 1; } return ret; } // 転置 matrix_mod t()const{ matrix_mod ret(m, n, 0); for(int i = 0; i < n; i++){ for(int j = 0; j < m; j++){ ret[j][i] = val[i][j]; } } return ret; } //掃き出し法で上三角行列を作る, {変形後の行列、行のスワップ回数}を返す O(NM^2) std::pair<matrix_mod, int> gaussian_elimination(){ matrix_mod v(*this); int row = 0;//確定していない行 int swp = 0; for(int i = 0; i < m && row < n; i++){ //i列目が0でない行を探す int r = -1; for(int j = row; j < n; j++){ if(v[j][i].val()){ r = j; break; } } if(r == -1) continue; if(r != row){ swp++; std::swap(v[r], v[row]); } //i列目が0でない行の処理 for(int j = row + 1; j < n; j++){ if(v[j][i].val() == 0) continue; mint x = v[j][i] / v[row][i]; for(int k = i; k < m; k++){ v[j][k] -= x * v[row][k]; } } row++; } return {v, swp}; } //掃き出し法で上三角行列を作る, {変形後の行列、行のスワップ回数}を返す O(NM^2 * log mod) std::pair<matrix_mod, int> gaussian_elimination_arbitrary_mod(){ matrix_mod v(*this); int row = 0;//確定していない行 int swp = 0; for(int i = 0; i < m && row < n; i++){ //i列目が0でない行を探す int r = -1; for(int j = row; j < n; j++){ if(v[j][i].val()){ r = j; break; } } if(r == -1) continue; if(r != row){ swp++; std::swap(v[r], v[row]); } //i列目が0でない行の処理 for(int j = row + 1; j < n; j++){ while(v[j][i].val() != 0){ if(v[row][i].val() > v[j][i].val()){ swp++; std::swap(v[row], v[j]); } int x = v[j][i].val() / v[row][i].val(); for(int k = i; k < m; k++){ v[j][k] -= x * v[row][k]; } } } row++; } return {v, swp}; } //すでに上三角行列になっていることが前提 int rank(){ int cnt = 0; for(int i = 0; i < n; i++, cnt++){ bool f = false; for(int j = i; j < m; j++){ if(val[i][j].val()){ f = true; break; } } if(!f) break; } return cnt; } // 行列式 O(N^3) mint det(){ assert(n == m); // 正方行列のみ auto [tmp, swp] = gaussian_elimination(); mint res(1); for(int i = 0; i < n; i++) res *= tmp[i][i]; return swp & 1 ? -res : res; } // 行列式 O(N^3 * log mod) mint det_arbitrary_mod(){ assert(n == m); // 正方行列のみ auto [tmp, swp] = gaussian_elimination_arbitrary_mod(); mint res(1); for(int i = 0; i < n; i++) res *= tmp[i][i]; return swp & 1 ? -res : res; } // (n, m) + (n, l) -> (n, m + l) 横に結合 matrix_mod concat_horizontal(matrix_mod vr){ assert(n == vr.n); matrix_mod res(*this); for(int i = 0; i < n; i++){ res[i].insert(res[i].end(), vr[i].begin(), vr[i].end()); } res.m += vr.m; return res; } // (n, m) + (l, m) -> (n + l, m) 縦に結合 matrix_mod concat_vertical(matrix_mod vr){ assert(m == vr.m); matrix_mod res(*this); for(int i = 0; i < vr.n; i++) res.val.push_back(vr[i]); res.n += vr.n; return res; } // (n, m) -> (n, k), (n, m - k) std::pair<matrix_mod, matrix_mod> split_horizontal(int k){ assert(0 <= k && k <= m); matrix_mod a(n, k), b(n, m - k); for(int i = 0; i < n; i++){ for(int j = 0; j < k; j++){ a[i][j] = val[i][j]; } } for(int i = 0; i < n; i++){ for(int j = 0; j < m - k; j++){ b[i][j] = val[i][j + k]; } } return {a, b}; } // (n, m) -> (k, m), (n - k, m) std::pair<matrix_mod, matrix_mod> split_vertical(int k){ assert(0 <= k && k <= n); matrix_mod a(k, m), b(n - k, m); for(int i = 0; i < k; i++){ for(int j = 0; j < m; j++){ a[i][j] = val[i][j]; } } for(int i = 0; i < n - k; i++){ for(int j = 0; j < m; j++){ b[i][j] = val[k + i][j]; } } return {a, b}; } matrix_mod inv(){ assert(n == m); auto [tmp, swp] = concat_horizontal(eye(n)).gaussian_elimination(); for(int i = 0; i < n; i++){ mint x = tmp[i][i]; if(!x.val()) return matrix_mod{};// 存在しない x = x.inv(); for(int j = 0; j < 2 * n; j++) tmp[i][j] *= x; } for(int i = n - 1; i >= 0; i--){ for(int j = i + 1; j < n; j++){ if(!tmp[i][j].val()) continue; mint c = tmp[i][j]; for(int k = j; k < 2 * n; k++){ tmp[i][k] -= c * tmp[j][k]; } } } return tmp.split_horizontal(n).second; } // https://ja.wikipedia.org/wiki/LU%E5%88%86%E8%A7%A3 // キャッシュのためにuを転置して実装 std::pair<matrix_mod, matrix_mod> lu_decomposition(){ matrix_mod l = eye(n), u(n, n); for(int i = 0; i < n; i++){ // u[i][i]を決定 u[i][i] = val[i][i]; for(int j = 0; j < i; j++) u[i][i] -= l[i][j] * u[i][j]; if(u[i][i].val() == 0) return {matrix_mod{}, matrix_mod{}}; // 不可能 mint iuii = u[i][i].inv(); // l[0, n)[i]を決定 for(int j = i + 1; j < n; j++){ l[j][i] = val[j][i]; for(int k = 0; k < i; k++) l[j][i] -= l[j][k] * u[i][k]; l[j][i] *= iuii; } // u[i][0, n)を決定 for(int j = i + 1; j < n; j++){ u[j][i] = val[i][j]; for(int k = 0; k < i; k++) u[j][i] -= l[i][k] * u[j][k]; } } u = u.t(); return {l, u}; } // Ax = b // (n, m) * (m, 1) -> (n, 1) // を満たす連立方程式を解く, 解空間の次元、(rank*変数)の基底を返す // 解空間の基底は任意のt_iについてA * (v1t1 + v2t2 ...) = 0を満たす // つまり plus + res[0]t_0 + res[1]t_1 + res[2]t_2...は全て解を満たす // 解が存在しない場合解空間の次元として-1を返す std::tuple<int, matrix_mod, vec> system_of_linear_equations(const vec &vr){ assert(vr.size() == n); matrix_mod tmp = concat_horizontal(matrix_mod(vr).t()).gaussian_elimination().first; //解空間の次元 = 変数の数 - 階数 int r = tmp.rank(); std::vector<int> fc(r, -1);//各行に初めて非零要素が現れる列 for(int i = 0; i < r; i++){ mint tmp_inv; bool f = false; for(int j = i; j < tmp.m; j++){ if(tmp[i][j].val() == 0) continue; if(j == tmp.m - 1 && !f){ return {-1, matrix_mod{}, vec{}}; // 解なし } if(!f){ tmp_inv = tmp[i][j].inv(); fc[i] = j; f = true; } tmp[i][j] = tmp[i][j] * tmp_inv; } } int d = tmp.m - 1 - r, v = tmp.m - 1; vec plus(v, 0); for(int i = r - 1; i >= 0; i--){ int idx = fc[i]; assert(idx != -1); plus[idx] = tmp[i][v]; for(int j = idx + 1; j < v; j++){ plus[idx] -= plus[j] * tmp[i][j]; } } matrix_mod res(d, v, 0); std::vector<bool> not_fc(v, true); for(int i = 0; i < r; i++) not_fc[fc[i]] = false; for(int i = 0, j = 0; i < v; i++) if(not_fc[i]) res[j++][i] = 1; for(int i = r - 1; i >= 0; i--){ //各行に1つまだ確定していない変数が現れる int col = fc[i]; assert(col != -1); assert(tmp[i][col].val() == 1); for(int k = 0; k < d; k++){ // 次元 for(int j = col + 1; j < v; j++){ // すでに確定した要素 res[k][col] -= res[k][j] * tmp[i][j]; } } } return {d, res, plus}; } }; #line 4 "a.cpp" using mint = dynamic_modint<0>; using M = matrix_mod<mint>; int main(){ io_init(); int n, b; std::cin >> n >> b; mint::set_mod(b); M m(3, 3); range(i, 0, 3){ range(j, 0, 3){ int t; std::cin >> t; m[i][j] = t; } } //m = m.pow(n).gaussian_elimination().first; std::cout << m.pow(n).det_arbitrary_mod() << '\n'; }