結果

問題 No.2443 特殊線形群の標準表現
ユーザー ktr216ktr216
提出日時 2023-08-25 22:34:38
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 361 ms / 3,000 ms
コード長 6,149 bytes
コンパイル時間 1,896 ms
コンパイル使用メモリ 177,596 KB
実行使用メモリ 65,792 KB
最終ジャッジ日時 2024-06-06 17:13:13
合計ジャッジ時間 6,045 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 3 ms
5,376 KB
testcase_13 AC 5 ms
5,376 KB
testcase_14 AC 34 ms
9,472 KB
testcase_15 AC 361 ms
65,756 KB
testcase_16 AC 350 ms
65,564 KB
testcase_17 AC 348 ms
65,792 KB
testcase_18 AC 346 ms
65,792 KB
testcase_19 AC 349 ms
65,564 KB
testcase_20 AC 321 ms
65,692 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;

#define double long double

using ll = long long;
using ull = unsigned long long;
using VB = vector<bool>;
using VVB = vector<VB>;
using VVVB = vector<VVB>;
using VC = vector<char>;
using VVC = vector<VC>;
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using VVVVI = vector<VVVI>;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using VVVVL = vector<VVVL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VU = vector<ull>;
//using P = pair<int, int>;

#define REP(i, n) for (ll i = 0; i < (int)(n); i++)
#define FOR(i, a, b) for (ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()

constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};

template< typename T1, typename T2>
inline bool chmax(T1 &a, T2 b) {return a < b && (a = b, true); }
template< typename T1, typename T2>
inline bool chmin(T1 &a, T2 b) {return a > b && (a = b, true); }

const ll MOD = 998244353;

const int MAX_N = 1000000;
int par[MAX_N];
int rnk[MAX_N];
int siz[MAX_N];

void init(int n) {
    REP(i,n) {
        par[i] = i;
        rnk[i] = 0;
        siz[i] = 1;
    }
}

int find(int x) {
    if (par[x] == x) {
        return x;
    } else {
        return par[x] = find(par[x]);
    }
}

void unite(int x, int y) {
    x = find(x);
    y = find(y);
    if (x == y) return;
    int s = siz[x] + siz[y];
    if (rnk[x] < rnk[y]) {
        par[x] = y;
    } else {
        par[y] = x;
        if (rnk[x] == rnk[y]) rnk[x]++;
    }
    siz[find(x)] = s;
}

bool same(int x, int y) {
    return find(x) == find(y);
}

int size(int x) {
    return siz[find(x)];
}

ll mod_pow(ll x, ll n, ll mod) {
    ll res = 1;
    x %= mod;
    while (n > 0) {
        if (n & 1) res = res * x % mod;
        x = x * x % mod;
        n >>= 1;
    }
    return res;
}

ll gcd(ll x, ll y) {
    if (y == 0) return x;
    return gcd(y, x % y);
}

/*

typedef pair<ll, int> P0;
struct edge { int to; ll cost; };

const int MAX_V = 100000;
//const ll LINF = 1LL<<60;

int V;
vector<edge> G[MAX_V];
ll d[MAX_V];

void dijkstra(ll s) {
    priority_queue<P0, vector<P0>, greater<P0> > que;
    fill(d, d + V, LINF);
    d[s] = 0;
    que.push(P0(0, s));

    while (!que.empty()) {
        P0 p = que.top(); que.pop();
        int v = p.second;
        if (d[v] < p.first) continue;
        for (edge e : G[v]) {
            if (d[e.to] > d[v] + e.cost) {
                d[e.to] = d[v] + e.cost;
                que.push(P0(d[e.to], e.to));
            }
        }
    }
}

*/

/*

double EPS = 1e-10;

double add(double a, double b) {
    if (abs(a + b) < EPS * (abs(a) + abs(b))) return 0;
    return a + b;
}

struct P {
    double x, y;
    P() {}
    P(double x, double y) : x(x), y(y) {
    }
    P operator + (P p) {
        return P(add(x, p.x), add(y, p.y));
    }
    P operator - (P p) {
        return P(add(x, -p.x), add(y, -p.y));
    }
    P operator * (double d) {
        return P(x * d, y * d);
    }
    double dot(P p) {
        return add(x * p.x, y * p.y);
    }
    double det(P p) {
        return add(x * p.y, -y * p.x);
    }
};

bool on_seg(P p1, P p2, P q) {
    return ()
}

P intersection(P p1, P p2, P q1, P q2) {
    return p1 + (p2 - p1) * ((q2 - q1).det(q1 - p1) / (q2 - q1).det(p2 - p1));
}

*/

/*

VL f(600010, 1);

ll C(ll n, ll k) {
    return f[n] * mod_pow(f[k], MOD - 2, MOD) % MOD * mod_pow(f[n - k], MOD - 2, MOD) % MOD;
}

ll P(ll n, ll k) {
    return f[n] * mod_pow(f[n - k], MOD - 2, MOD) % MOD;
}

*/

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    //REP(i, 600009) f[i + 1] = f[i] * (i + 1) % MOD;
    ll N, B, Q;
    cin >> N >> B >> Q;
    VVVL A(N, VVL(2, VL(2))), C(N + 1, VVL(2, VL(2, 0)));
    VVVL D(N, VVL(2, VL(2))), E(N + 1, VVL(2, VL(2, 0)));
    REP(i, N) REP(j, 2) REP(k, 2) cin >> A[i][j][k];
    VL L(Q), R(Q), x(Q), y(Q);
    REP(i, Q) cin >> L[i] >> R[i] >> x[i] >> y[i];
    REP(i, N) REP(j, 2) REP(k, 2) {
        A[i][j][k] = (A[i][j][k] + B * 1000000000) % B;
    }
    REP(i, Q) {
        x[i] = (x[i] + B * 1000000000) % B;
        y[i] = (y[i] + B * 1000000000) % B;
    }
    REP(i, N) {
        D[i][0][0] = A[i][1][1];
        D[i][0][1] = (B-A[i][0][1])%B;
        D[i][1][0] = (B-A[i][1][0])%B;
        D[i][1][1] = A[i][0][0];
    }
    C[0][0][0] = 1;
    C[0][1][1] = 1;
    E[0][0][0] = 1;
    E[0][1][1] = 1;
    REP(i, N) {
        C[i + 1][0][0] = (A[i][0][0] * C[i][0][0] + A[i][0][1] * C[i][1][0]) % B;
        C[i + 1][0][1] = (A[i][0][0] * C[i][0][1] + A[i][0][1] * C[i][1][1]) % B;
        C[i + 1][1][0] = (A[i][1][0] * C[i][0][0] + A[i][1][1] * C[i][1][0]) % B;
        C[i + 1][1][1] = (A[i][1][0] * C[i][0][1] + A[i][1][1] * C[i][1][1]) % B;
        E[i + 1][0][0] = (E[i][0][0] * D[i][0][0] + E[i][0][1] * D[i][1][0]) % B;
        E[i + 1][0][1] = (E[i][0][0] * D[i][0][1] + E[i][0][1] * D[i][1][1]) % B;
        E[i + 1][1][0] = (E[i][1][0] * D[i][0][0] + E[i][1][1] * D[i][1][0]) % B;
        E[i + 1][1][1] = (E[i][1][0] * D[i][0][1] + E[i][1][1] * D[i][1][1]) % B;
    }
    REP(i, Q) {
        ll u = (E[L[i]][0][0] * x[i] + E[L[i]][0][1] * y[i]) % B;
        ll v = (E[L[i]][1][0] * x[i] + E[L[i]][1][1] * y[i]) % B;
        ll z = (C[R[i]][0][0] * u + C[R[i]][0][1] * v) % B;
        ll w = (C[R[i]][1][0] * u + C[R[i]][1][1] * v) % B;
        //cout << "u=" << u << " v=" << v << endl;
        cout << z << " " << w << endl;
    }
    /*
    cout << endl;
    REP(i, N) {
        cout << A[i][0][0] << " " << A[i][0][1] << "  ";
        cout << D[i][0][0] << " " << D[i][0][1] << "  ";
        cout << C[i+1][0][0] << " " << C[i+1][0][1] << "  ";
        cout << E[i+1][0][0] << " " << E[i+1][0][1] << " ";
        cout << endl;
        cout << A[i][1][0] << " " << A[i][1][1] << "  ";
        cout << D[i][1][0] << " " << D[i][1][1] << "  ";
        cout << C[i+1][1][0] << " " << C[i+1][1][1] << "  ";
        cout << E[i+1][1][0] << " " << E[i+1][1][1] << " ";
        cout << endl;
        cout << endl;
    }
    */
}
0