結果

問題 No.2443 特殊線形群の標準表現
ユーザー tokusakuraitokusakurai
提出日時 2023-08-25 22:53:20
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,253 bytes
コンパイル時間 2,277 ms
コンパイル使用メモリ 211,100 KB
実行使用メモリ 14,596 KB
最終ジャッジ日時 2024-06-06 17:36:21
合計ジャッジ時間 5,268 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 WA -
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 WA -
testcase_08 AC 2 ms
5,376 KB
testcase_09 WA -
testcase_10 AC 1 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

struct Runtime_Mod_Int {
    int x;

    Runtime_Mod_Int() : x(0) {}

    Runtime_Mod_Int(long long y) {
        x = y % get_mod();
        if (x < 0) x += get_mod();
    }

    static inline int &get_mod() {
        static int mod = 0;
        return mod;
    }

    static void set_mod(int md) { get_mod() = md; }

    Runtime_Mod_Int &operator+=(const Runtime_Mod_Int &p) {
        if ((x += p.x) >= get_mod()) x -= get_mod();
        return *this;
    }

    Runtime_Mod_Int &operator-=(const Runtime_Mod_Int &p) {
        if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
        return *this;
    }

    Runtime_Mod_Int &operator*=(const Runtime_Mod_Int &p) {
        x = (int)(1LL * x * p.x % get_mod());
        return *this;
    }

    Runtime_Mod_Int &operator/=(const Runtime_Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Runtime_Mod_Int &operator++() { return *this += Runtime_Mod_Int(1); }

    Runtime_Mod_Int operator++(int) {
        Runtime_Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Runtime_Mod_Int &operator--() { return *this -= Runtime_Mod_Int(1); }

    Runtime_Mod_Int operator--(int) {
        Runtime_Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Runtime_Mod_Int operator-() const { return Runtime_Mod_Int(-x); }

    Runtime_Mod_Int operator+(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) += p; }

    Runtime_Mod_Int operator-(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) -= p; }

    Runtime_Mod_Int operator*(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) *= p; }

    Runtime_Mod_Int operator/(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) /= p; }

    bool operator==(const Runtime_Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Runtime_Mod_Int &p) const { return x != p.x; }

    Runtime_Mod_Int inverse() const {
        assert(*this != Runtime_Mod_Int(0));
        return pow(get_mod() - 2);
    }

    Runtime_Mod_Int pow(long long k) const {
        Runtime_Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Runtime_Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Runtime_Mod_Int &p) {
        long long a;
        is >> a;
        p = Runtime_Mod_Int(a);
        return is;
    }
};

using mint = Runtime_Mod_Int;

ll M;

template <typename Monoid>
struct Segment_Tree {
    vector<Monoid> seg;
    const Monoid e1;
    int n;

    Monoid f(Monoid a, Monoid b) const {
        Monoid c;
        swap(a, b);
        rep(i, 2) rep(j, 2) c[i][j] = 0;
        rep(i, 2) rep(j, 2) rep(k, 2) c[i][k] += a[i][j] * b[j][k], c[i][k] %= M;
        return c;
    }

    Segment_Tree(const vector<Monoid> &v, const Monoid &e1) : e1(e1) {
        int m = sz(v);
        n = 1;
        while (n < m) n <<= 1;
        seg.assign(2 * n, e1);
        copy(all(v), seg.begin() + n);
        for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
    }

    void change(int i, const Monoid &x) {
        seg[i += n] = x;
        while (i >>= 1) { seg[i] = f(seg[2 * i], seg[2 * i + 1]); }
    }

    Monoid query(int l, int r) const {
        Monoid L = e1, R = e1;
        l += n, r += n;
        while (l < r) {
            if (l & 1) L = f(L, seg[l++]);
            if (r & 1) L = f(seg[--r], R);
            l >>= 1, r >>= 1;
        }
        return f(L, R);
    }

    Monoid operator[](int i) const { return seg[n + i]; }

    inline bool check(const Monoid &a, const Monoid &b) const { return a >= b; }

    int find_subtree(int i, const Monoid &x, bool type) const {
        while (i < n) {
            if (check(seg[2 * i + type], x))
                i = 2 * i + type;
            else
                i = 2 * i + (type ^ 1);
        }
        return i - n;
    }

    int find_first(int l, const Monoid &x) const {
        int a = l + n, b = n + n;
        while (a < b) {
            if (a & 1) {
                if (check(seg[a], x)) return find_subtree(a, x, false);
                a++;
            }
            a >>= 1, b >>= 1;
        }
        return n;
    }

    int find_last(int r, const Monoid &x) const {
        int a = n, b = r + n;
        while (a < b) {
            if (b & 1) {
                b--;
                if (check(seg[b], x)) return find_subtree(b, x, true);
            }
            a >>= 1, b >>= 1;
        }
        return -1;
    }
};

void solve() {
    int N, T;
    cin >> N >> M >> T;

    // mint::set_mod(M);

    using mat = array<array<ll, 2>, 2>;

    vector<mat> A(N);

    rep(i, N) {
        rep(j, 2) rep(k, 2) cin >> A[i][j][k]; //
    }
    mat I;
    I[0][0] = I[1][1] = 1, I[0][1] = I[1][0] = 0;

    Segment_Tree<mat> seg(A, I);

    // vector<mat> P(N + 1, mat::I(2));
    // rep(i, N) P[i + 1] = P[i] * A[i];

    // vector<mat> Q(N + 1, mat::I(2));
    // rep(i, N) Q[i + 1] = A[i] * Q[i];

    while (T--) {
        int l, r;
        ll x, y;
        cin >> l >> r >> x >> y;
        mat X = seg.query(l, r);
        ll nx = X[0][0] * x + X[0][1] * y;
        ll ny = X[1][0] * x + X[1][1] * y;
        nx %= M, ny %= M;
        if (nx < 0) nx += M;
        if (ny < 0) ny += M;
        cout << nx MM ny << '\n';
    }
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0