結果
| 問題 |
No.2443 特殊線形群の標準表現
|
| コンテスト | |
| ユーザー |
hiromi_ayase
|
| 提出日時 | 2023-08-25 23:17:35 |
| 言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 318 ms / 3,000 ms |
| コード長 | 3,988 bytes |
| コンパイル時間 | 6,659 ms |
| コンパイル使用メモリ | 268,204 KB |
| 最終ジャッジ日時 | 2025-02-16 14:23:57 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
| 純コード判定しない問題か言語 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 |
ソースコード
#include <bits/stdc++.h>
#include <atcoder/segtree>
#include <atcoder/modint>
using namespace std;
using i32 = int;
using u32 = unsigned int;
using i64 = long long;
using u64 = unsigned long long;
#define FAST_IO \
ios::sync_with_stdio(false); \
cin.tie(0);
const i64 INF = 1001001001001001001;
using Modint = atcoder::static_modint<998244353>;
template <typename T, int H, int W>
struct Matrix {
using Array = array<array<T, W>, H>;
Array A;
Matrix() : A() {
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) (*this)[i][j] = T();
}
int height() const { return H; }
int width() const { return W; }
inline const array<T, W> &operator[](int k) const { return A[k]; }
inline array<T, W> &operator[](int k) { return A[k]; }
static Matrix I() {
assert(H == W);
Matrix mat;
for (int i = 0; i < H; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) A[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++) A[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
assert(H == W);
Matrix C;
for (int i = 0; i < H; i++)
for (int k = 0; k < H; k++)
for (int j = 0; j < H; j++) C[i][j] += A[i][k] * B[k][j];
A.swap(C.A);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I();
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
bool operator==(const Matrix &B) const {
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++)
if (A[i][j] != B[i][j]) return false;
return true;
}
bool operator!=(const Matrix &B) const {
for (int i = 0; i < H; i++)
for (int j = 0; j < W; j++)
if (A[i][j] != B[i][j]) return true;
return false;
}
friend ostream &operator<<(ostream &os, const Matrix &p) {
for (int i = 0; i < H; i++) {
os << "[";
for (int j = 0; j < W; j++) {
os << p[i][j] << (j + 1 == W ? "]\n" : ",");
}
}
return (os);
}
T determinant(int n = -1) {
if (n == -1) n = H;
Matrix B(*this);
T ret = 1;
for (int i = 0; i < n; i++) {
int idx = -1;
for (int j = i; j < n; j++) {
if (B[j][i] != 0) {
idx = j;
break;
}
}
if (idx == -1) return 0;
if (i != idx) {
ret *= T(-1);
swap(B[i], B[idx]);
}
ret *= B[i][i];
T inv = T(1) / B[i][i];
for (int j = 0; j < n; j++) {
B[i][j] *= inv;
}
for (int j = i + 1; j < n; j++) {
T a = B[j][i];
if (a == 0) continue;
for (int k = i; k < n; k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
using mint = atcoder::modint;
int main() {
FAST_IO
int n,b,q;
cin >> n >> b >> q;
mint::set_mod(b);
using M = Matrix<mint, 2, 2>;
auto op = [](M x, M y) {
return y * x;
};
auto e = []() {
M I;
I[0][0] = I[1][1] = 1;
return I;
};
atcoder::segtree<M, op, e> st(n);
for (int i = 0; i < n; i ++) {
int a1,a2,a3,a4;
cin >> a1 >> a2 >> a3 >> a4;
M a;
a[0][0] = a1;
a[0][1] = a2;
a[1][0] = a3;
a[1][1] = a4;
st.set(i, a);
}
for (int i = 0; i < q; i ++) {
int l,r,x,y;
cin >> l >> r >> x >> y;
M v;
v[0][0] = x;
v[1][0] = y;
auto ret = st.prod(l, r) * v;
cout << ret[0][0].val() << " " << ret[1][0].val() << endl;
}
}
hiromi_ayase