結果
問題 | No.2446 完全列 |
ユーザー | 👑 Kazun |
提出日時 | 2023-08-25 23:19:23 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 13,021 bytes |
コンパイル時間 | 354 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 59,012 KB |
最終ジャッジ日時 | 2024-06-06 20:29:39 |
合計ジャッジ時間 | 2,378 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 39 ms
58,304 KB |
testcase_01 | AC | 39 ms
56,984 KB |
testcase_02 | AC | 40 ms
57,992 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | AC | 41 ms
57,860 KB |
testcase_06 | WA | - |
testcase_07 | AC | 45 ms
56,884 KB |
testcase_08 | AC | 41 ms
58,160 KB |
testcase_09 | AC | 40 ms
57,908 KB |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | AC | 44 ms
57,516 KB |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 45 ms
56,972 KB |
testcase_16 | AC | 46 ms
57,860 KB |
testcase_17 | WA | - |
testcase_18 | AC | 38 ms
57,248 KB |
testcase_19 | AC | 41 ms
58,140 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 38 ms
56,728 KB |
testcase_23 | AC | 39 ms
57,444 KB |
testcase_24 | WA | - |
testcase_25 | AC | 39 ms
57,160 KB |
testcase_26 | AC | 39 ms
58,172 KB |
testcase_27 | AC | 38 ms
57,060 KB |
testcase_28 | AC | 40 ms
57,352 KB |
testcase_29 | WA | - |
ソースコード
from copy import deepcopy class Modulo_Matrix(): __slots__=("ele","row","col","size") #入力 def __init__(self,M): """ 行列 M の定義 M: 行列 ※ Mod: 法はグローバル変数から指定 """ self.ele=[[x%Mod for x in X] for X in M] R=len(M) if R!=0: C=len(M[0]) else: C=0 self.row=R self.col=C self.size=(R,C) #出力 def __str__(self): return "["+"\n".join(map(str,self.ele))+"]" def __repr__(self): return str(self) #+,- def __pos__(self): return self def __neg__(self): return self.__scale__(-1) #加法 def __add__(self,other): M=self.ele; N=other.ele L=[[0]*self.col for _ in range(self.row)] for i in range(self.row): Li,Mi,Ni=L[i],M[i],N[i] for j in range(self.col): Li[j]=Mi[j]+Ni[j] return Modulo_Matrix(L) def __iadd__(self,other): M=self.ele; N=other.ele for i in range(self.row): Mi,Ni=M[i],N[i] for j in range(self.col): Mi[j]+=Ni[j] Mi[j]%=Mod return self #減法 def __sub__(self,other): M=self.ele; N=other.ele L=[[0]*self.col for _ in range(self.row)] for i in range(self.row): Li,Mi,Ni=L[i],M[i],N[i] for j in range(self.col): Li[j]=Mi[j]-Ni[j] return Modulo_Matrix(L) def __isub__(self,other): M=self.ele; N=other.ele for i in range(self.row): Mi,Ni=M[i],N[i] for j in range(self.col): Mi[j]-=Ni[j] Mi[j]%=Mod return self #乗法 def __mul__(self,other): if isinstance(other,Modulo_Matrix): assert self.col==other.row, "左側の列と右側の行が一致しません.({},{})".format(self.size,other.size) M=self.ele; N=other.ele E=[[0]*other.col for _ in range(self.row)] for i in range(self.row): Ei,Mi=E[i],M[i] for k in range(self.col): m_ik,Nk=Mi[k],N[k] for j in range(other.col): Ei[j]+=m_ik*Nk[j] Ei[j]%=Mod return Modulo_Matrix(E) elif isinstance(other,int): return self.__scale__(other) def __rmul__(self,other): if isinstance(other,int): return self.__scale__(other) def inverse(self): assert self.row==self.col,"正方行列ではありません." M=self N=M.row R=[[1 if i==j else 0 for j in range(N)] for i in range(N)] T=deepcopy(M.ele) for j in range(N): if T[j][j]==0: for i in range(j+1,N): if T[i][j]: break else: assert 0, "正則行列ではありません" T[j],T[i]=T[i],T[j] R[j],R[i]=R[i],R[j] Tj,Rj=T[j],R[j] inv=pow(Tj[j], Mod-2, Mod) for k in range(N): Tj[k]*=inv; Tj[k]%=Mod Rj[k]*=inv; Rj[k]%=Mod for i in range(N): if i==j: continue c=T[i][j] Ti,Ri=T[i],R[i] for k in range(N): Ti[k]-=Tj[k]*c; Ti[k]%=Mod Ri[k]-=Rj[k]*c; Ri[k]%=Mod return Modulo_Matrix(R) #スカラー倍 def __scale__(self,r): M=self.ele r%=Mod L=[[(r*M[i][j])%Mod for j in range(self.col)] for i in range(self.row)] return Modulo_Matrix(L) #累乗 def __pow__(self,n): assert self.row==self.col, "正方行列ではありません." r=self.col def __mat_mul(A,B): E=[[0]*r for _ in range(r)] for i in range(r): a=A[i]; e=E[i] for k in range(r): b=B[k] for j in range(r): e[j]+=a[k]*b[j] e[j]%=Mod return E X=deepcopy(self.ele) E=[[1 if i==j else 0 for j in range(r)] for i in range(r)] sgn=1 if n>=0 else -1 n=abs(n) while True: if n&1: E=__mat_mul(E,X) n>>=1 if n: X=__mat_mul(X,X) else: break if sgn==1: return Modulo_Matrix(E) else: return Modulo_Matrix(E).inverse() #等号 def __eq__(self,other): return self.ele==other.ele #不等号 def __neq__(self,other): return not(self==other) #転置 def transpose(self): return Modulo_Matrix(list(map(list,zip(*self.ele)))) #行基本変形 def row_reduce(self): M=self (R,C)=M.size T=[] for i in range(R): U=[] for j in range(C): U.append(M.ele[i][j]) T.append(U) I=0 for J in range(C): if T[I][J]==0: for i in range(I+1,R): if T[i][J]!=0: T[i],T[I]=T[I],T[i] break if T[I][J]!=0: u=T[I][J] u_inv=pow(u, Mod-2, Mod) for j in range(C): T[I][j]*=u_inv T[I][j]%=Mod for i in range(R): if i!=I: v=T[i][J] for j in range(C): T[i][j]-=v*T[I][j] T[i][j]%=Mod I+=1 if I==R: break return Modulo_Matrix(T) #列基本変形 def column_reduce(self): M=self (R,C)=M.size T=[] for i in range(R): U=[] for j in range(C): U.append(M.ele[i][j]) T.append(U) J=0 for I in range(R): if T[I][J]==0: for j in range(J+1,C): if T[I][j]!=0: for k in range(R): T[k][j],T[k][J]=T[k][J],T[k][j] break if T[I][J]!=0: u=T[I][J] u_inv=pow(u, Mod-2, Mod) for i in range(R): T[i][J]*=u_inv T[i][J]%=Mod for j in range(C): if j!=J: v=T[I][j] for i in range(R): T[i][j]-=v*T[i][J] T[i][j]%=Mod J+=1 if J==C: break return Modulo_Matrix(T) #行列の階数 def rank(self): M=self.row_reduce() (R,C)=M.size T=M.ele rnk=0 for i in range(R): f=False for j in range(C): if T[i][j]!=0: f=True break if f: rnk+=1 else: break return rnk #行の結合 def row_union(self,other): return Modulo_Matrix(self.ele+other.ele) #列の結合 def column_union(self,other): E=[] for i in range(self.row): E.append(self.ele[i]+other.ele[i]) return Modulo_Matrix(E) def __getitem__(self,index): if isinstance(index, int): return self.ele[index] else: return self.ele[index[0]][index[1]] def __setitem__(self,index,val): assert isinstance(index,tuple) and len(index)==2 self.ele[index[0]][index[1]]=val #================================================== class Modulo_Vector: def __init__(self, vector): self.vec = [vi % Mod for vi in vector] self.size = len(vector) #出力 def __str__(self): return str(self.vec) def __repr__(self): return str(self) def __bool__(self): return any(self.vec) def __iter__(self): yield from self.vec #+,- def __pos__(self): return self def __neg__(self): return self.__scale__(-1) #加法 def __add__(self, other): assert self.size == other.size, f"2つのベクトルのサイズが異なります. ({self.size}, {other.size})" return Modulo_Vector([vi + wi for vi, wi in zip(self, other)]) #減法 def __sub__(self, other): return self+(-other) def __rsub__(self, other): return (-self)+other #乗法 def __mul__(self,other): pass def __rmul__(self,other): return self.__scale__(other) #スカラー倍 def __scale__(self, r): return Modulo_Vector([r * vi for vi in self]) #内積 def inner(self,other): assert self.size == other.size, f"2つのベクトルのサイズが異なります. ({self.size}, {other.size})" return sum(vi * wi % Mod for vi, wi in zip(self, other)) % Mod #累乗 def __pow__(self,n): pass #等号 def __eq__(self, other): return self.vec == other.vec def __len__(self): return self.size #不等号 def __neq__(self, other): return not (self == other) def __getitem__(self,index): assert isinstance(index,int) return self.vec[index] def __setitem__(self,index,val): assert isinstance(index,int) self.vec[index]=val class Modulo_Vector_Space: def __init__(self, dim): """ 次元が dim のベクトル空間の部分空間を生成する. """ self.dim=dim self.basis=[] self.__ind=[] def __contains__(self, v): for i,u in zip(self.__ind, self.basis): v-=v[i]*u return not bool(v) def add_vectors(self, *S): for v in S: assert len(v)==self.dim for i,u in zip(self.__ind, self.basis): v-=v[i]*u if bool(v): for j in range(self.dim): if v[j]: self.__ind.append(j) break v=pow(v[j], Mod-2, Mod) * v self.basis.append(v) for k in range(len(self.basis)-1): self.basis[k]-=self.basis[k][j]*v def dimension(self): return len(self.basis) def __le__(self, other): for u in self.basis: if u not in other: return False return True def __ge__(self, other): return other<=self def __eq__(self, other): return (self<=other) and (other<=self) def refresh(self): I=sorted(range(len(self.__ind)), key=lambda i:self.__ind[i]) self.basis=[self.basis[i] for i in I] self.__ind=[self.__ind[i] for i in I] def projection(self, v): for i,u in zip(self.__ind, self.basis): v-=v[i]*u return v def Kernel_Space(A): """ 行列 A の核空間 Ker A (Ax=0 となる x の空間) を求める. """ row,col=A.size T=deepcopy(A.ele) p=[]; q=[] rnk=0 for j in range(col): for i in range(rnk,row): if T[i][j]!=0: break else: q.append(j) continue if j==col: return Modulo_Vector_Space(col) p.append(j) T[rnk],T[i]=T[i],T[rnk] inv=pow(T[rnk][j], Mod-2, Mod) for k in range(col): T[rnk][k]=(inv*T[rnk][k])%Mod for s in range(row): if s==rnk: continue c=-T[s][j] for t in range(col): T[s][t]=(T[s][t]+c*T[rnk][t])%Mod rnk+=1 x=[0]*col for i in range(rnk): x[p[i]]=T[i][-1] ker_dim=col-rnk ker=[[0]*col for _ in range(ker_dim)] for i in range(ker_dim): ker[i][q[i]]=1 for i in range(ker_dim): for j in range(rnk): ker[i][p[j]]=-T[j][q[i]]%Mod Ker=Modulo_Vector_Space(col) Ker.add_vectors(*[Modulo_Vector(v) for v in ker]) return Ker #================================================== def solve(): L, M, N = map(int, input().split()) A = [None] * L for i in range(L): A[i] = list(map(int, input().split())) B = [None] * M for i in range(M): B[i] = list(map(int, input().split())) def calc(mod): global Mod; Mod = mod X = Modulo_Matrix(A) Y = Modulo_Matrix(B) return Y.rank() == N and X.rank() == L and L == M - N return all(calc(mod) for mod in [998244353, 10**9 + 7, 10**9 + 9, 17737, 17747, 17749]) #================================================== print("Yes" if solve() else "No")