結果

問題 No.2444 一次変換と体積
ユーザー tokusakuraitokusakurai
提出日時 2023-08-25 23:38:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 11,963 bytes
コンパイル時間 1,936 ms
コンパイル使用メモリ 206,920 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-06 18:35:56
合計ジャッジ時間 2,624 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 1 ms
5,376 KB
testcase_17 AC 1 ms
5,376 KB
testcase_18 AC 1 ms
5,376 KB
testcase_19 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int pct(int x) { return __builtin_popcount(x); }
int pct(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
        cerr << fixed << setprecision(15);
    }
} io_setup;

constexpr int inf = (1 << 30) - 1;
constexpr ll INF = (1LL << 60) - 1;
// constexpr int MOD = 1000000007;
constexpr int MOD = 998244353;

struct Runtime_Mod_Int {
    int x;

    Runtime_Mod_Int() : x(0) {}

    Runtime_Mod_Int(long long y) {
        x = y % get_mod();
        if (x < 0) x += get_mod();
    }

    static inline int &get_mod() {
        static int mod = 0;
        return mod;
    }

    static void set_mod(int md) { get_mod() = md; }

    Runtime_Mod_Int &operator+=(const Runtime_Mod_Int &p) {
        if ((x += p.x) >= get_mod()) x -= get_mod();
        return *this;
    }

    Runtime_Mod_Int &operator-=(const Runtime_Mod_Int &p) {
        if ((x += get_mod() - p.x) >= get_mod()) x -= get_mod();
        return *this;
    }

    Runtime_Mod_Int &operator*=(const Runtime_Mod_Int &p) {
        x = (int)(1LL * x * p.x % get_mod());
        return *this;
    }

    Runtime_Mod_Int &operator/=(const Runtime_Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Runtime_Mod_Int &operator++() { return *this += Runtime_Mod_Int(1); }

    Runtime_Mod_Int operator++(int) {
        Runtime_Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Runtime_Mod_Int &operator--() { return *this -= Runtime_Mod_Int(1); }

    Runtime_Mod_Int operator--(int) {
        Runtime_Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Runtime_Mod_Int operator-() const { return Runtime_Mod_Int(-x); }

    Runtime_Mod_Int operator+(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) += p; }

    Runtime_Mod_Int operator-(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) -= p; }

    Runtime_Mod_Int operator*(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) *= p; }

    Runtime_Mod_Int operator/(const Runtime_Mod_Int &p) const { return Runtime_Mod_Int(*this) /= p; }

    bool operator==(const Runtime_Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Runtime_Mod_Int &p) const { return x != p.x; }

    Runtime_Mod_Int inverse() const {
        assert(*this != Runtime_Mod_Int(0));
        return pow(get_mod() - 2);
    }

    Runtime_Mod_Int pow(long long k) const {
        Runtime_Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Runtime_Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Runtime_Mod_Int &p) {
        long long a;
        is >> a;
        p = Runtime_Mod_Int(a);
        return is;
    }
};

using mint = Runtime_Mod_Int;

template <typename T>
struct Matrix {
    vector<vector<T>> A;
    int n, m;

    Matrix(int n, int m) : A(n, vector<T>(m, 0)), n(n), m(m) {}

    inline const vector<T> &operator[](int k) const { return A[k]; }

    inline vector<T> &operator[](int k) { return A[k]; }

    static Matrix I(int l) {
        Matrix ret(l, l);
        for (int i = 0; i < l; i++) ret[i][i] = 1;
        return ret;
    }

    Matrix &operator*=(const Matrix &B) {
        assert(m == B.n);
        Matrix ret(n, B.m);
        for (int i = 0; i < n; i++) {
            for (int k = 0; k < m; k++) {
                for (int j = 0; j < B.m; j++) ret[i][j] += A[i][k] * B[k][j];
            }
        }
        swap(A, ret.A);
        m = B.m;
        return *this;
    }

    Matrix operator*(const Matrix &B) const { return Matrix(*this) *= B; }

    Matrix pow(long long k) const {
        assert(n == m);
        Matrix now = *this, ret = I(n);
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    bool eq(const T &a, const T &b) const {
        return a == b;
        // return abs(a-b) <= EPS;
    }

    // 行基本変形を用いて簡約化を行い、(rank, det) の組を返す
    pair<int, T> row_reduction(vector<T> &b) {
        assert((int)b.size() == n);
        if (n == 0) return make_pair(0, m > 0 ? 0 : 1);
        int check = 0, rank = 0;
        T det = (n == m ? 1 : 0);
        for (int j = 0; j < m; j++) {
            int pivot = check;
            for (int i = check; i < n; i++) {
                if (A[i][j] != 0) pivot = i;
                // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
            }
            if (check != pivot) det *= T(-1);
            swap(A[check], A[pivot]), swap(b[check], b[pivot]);
            if (eq(A[check][j], T(0))) {
                det = T(0);
                continue;
            }
            rank++;
            det *= A[check][j];
            T r = T(1) / A[check][j];
            for (int k = j + 1; k < m; k++) A[check][k] *= r;
            b[check] *= r;
            A[check][j] = T(1);
            for (int i = 0; i < n; i++) {
                if (i == check) continue;
                if (!eq(A[i][j], 0)) {
                    for (int k = j + 1; k < m; k++) A[i][k] -= A[i][j] * A[check][k];
                    b[i] -= A[i][j] * b[check];
                }
                A[i][j] = T(0);
            }
            if (++check == n) break;
        }
        return make_pair(rank, det);
    }

    pair<int, T> row_reduction() {
        vector<T> b(n, T(0));
        return row_reduction(b);
    }

    // 行基本変形を行い、逆行列を求める
    pair<bool, Matrix> inverse() {
        if (n != m) return make_pair(false, Matrix(0, 0));
        if (n == 0) return make_pair(true, Matrix(0, 0));
        Matrix ret = I(n);
        for (int j = 0; j < n; j++) {
            int pivot = j;
            for (int i = j; i < n; i++) {
                if (A[i][j] != 0) pivot = i;
                // if(abs(A[i][j]) > abs(A[pivot][j])) pivot = i; // T が小数の場合はこちら
            }
            swap(A[j], A[pivot]), swap(ret[j], ret[pivot]);
            if (eq(A[j][j], T(0))) return make_pair(false, Matrix(0, 0));
            T r = T(1) / A[j][j];
            for (int k = j + 1; k < n; k++) A[j][k] *= r;
            for (int k = 0; k < n; k++) ret[j][k] *= r;
            A[j][j] = T(1);
            for (int i = 0; i < n; i++) {
                if (i == j) continue;
                if (!eq(A[i][j], T(0))) {
                    for (int k = j + 1; k < n; k++) A[i][k] -= A[i][j] * A[j][k];
                    for (int k = 0; k < n; k++) ret[i][k] -= A[i][j] * ret[j][k];
                }
                A[i][j] = T(0);
            }
        }
        return make_pair(true, ret);
    }

    // Ax = b の解の 1 つと解空間の基底の組を返す
    vector<vector<T>> Gaussian_elimination(vector<T> b) {
        row_reduction(b);
        vector<vector<T>> ret;
        vector<int> p(n, m);
        vector<bool> is_zero(m, true);
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                if (!eq(A[i][j], T(0))) {
                    p[i] = j;
                    break;
                }
            }
            if (p[i] < m) {
                is_zero[p[i]] = false;
            } else if (!eq(b[i], T(0))) {
                return {};
            }
        }
        vector<T> x(m, T(0));
        for (int i = 0; i < n; i++) {
            if (p[i] < m) x[p[i]] = b[i];
        }
        ret.push_back(x);
        for (int j = 0; j < m; j++) {
            if (!is_zero[j]) continue;
            x[j] = T(1);
            for (int i = 0; i < n; i++) {
                if (p[i] < m) x[p[i]] = -A[i][j];
            }
            ret.push_back(x);
            x[j] = T(0);
        }
        return ret;
    }
};

void solve() {
    int N, M;
    cin >> N >> M;
    vector<vector<ll>> a(3, vector<ll>(3));
    rep(i, 3) rep(j, 3) cin >> a[i][j];

    ll V = 0;

    rep(i, 3) {
        ll x = 1;
        rep(j, 3) x *= a[j][(i + j) % 3];
        V += x;
    }
    rep(i, 3) {
        ll x = 1;
        rep(j, 3) x *= a[j][(i + 3 - j) % 3];
        V -= x;
    }

    // cout << V << '\n';

    // Matrix<ll> A(3, 3);
    // rep(i, 3) rep(j, 3) A[i][j] = a[i][j];

    // ll V = A.row_reduction().second;

    if (V == 0) {
        cout << "0\n";
        return;
    }

    V = abs(V);

    mint::set_mod(M);

    cout << mint(V).pow(N) << '\n';
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0