結果

問題 No.2447 行列累乗根
ユーザー AerenAeren
提出日時 2023-08-26 16:40:24
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 423 ms / 2,000 ms
コード長 11,696 bytes
コンパイル時間 4,188 ms
コンパイル使用メモリ 372,820 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-07 12:16:52
合計ジャッジ時間 12,616 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 6 ms
5,376 KB
testcase_19 AC 43 ms
5,376 KB
testcase_20 AC 414 ms
5,376 KB
testcase_21 AC 411 ms
5,376 KB
testcase_22 AC 404 ms
5,376 KB
testcase_23 AC 406 ms
5,376 KB
testcase_24 AC 423 ms
5,376 KB
testcase_25 AC 410 ms
5,376 KB
testcase_26 AC 410 ms
5,376 KB
testcase_27 AC 414 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <x86intrin.h>
using namespace std;



// T must support +=, -=, *, *=, ==, and !=
template<class T>
struct matrix{
	using ring_t = T;
	using domain_t = vector<T>;
	using range_t = vector<T>;
	int n, m;
	vector<vector<T>> data;
	vector<T> &operator()(int i){
		assert(0 <= i && i < n);
		return data[i];
	}
	const vector<T> &operator()(int i) const{
		assert(0 <= i && i < n);
		return data[i];
	}
	T &operator()(int i, int j){
		assert(0 <= i && i < n && 0 <= j && j < m);
		return data[i][j];
	}
	const T &operator()(int i, int j) const{
		assert(0 <= i && i < n && 0 <= j && j < m);
		return data[i][j];
	}
	operator vector<vector<T>>() const{
		return data;
	}
	bool operator==(const matrix &a) const{
		assert(n == a.n && m == a.m);
		return data == a.data;
	}
	bool operator!=(const matrix &a) const{
		assert(n == a.n && m == a.m);
		return data != a.data;
	}
	matrix &operator+=(const matrix &a){
		assert(n == a.n && m == a.m);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] += a(i, j);
		return *this;
	}
	matrix operator+(const matrix &a) const{
		return matrix(*this) += a;
	}
	matrix &operator-=(const matrix &a){
		assert(n == a.n && m == a.m);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] -= a(i, j);
		return *this;
	}
	matrix operator-(const matrix &a) const{
		return matrix(*this) -= a;
	}
	matrix operator*=(const matrix &a){
		assert(m == a.n);
		int l = a.m;
		matrix res(n, l);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) for(auto k = 0; k < l; ++ k) res(i, k) += data[i][j] * a(j, k);
		return *this = res;
	}
	matrix operator*(const matrix &a) const{
		return matrix(*this) *= a;
	}
	matrix &operator*=(T c){
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] *= c;
		return *this;
	}
	matrix operator*(T c) const{
		return matrix(*this) *= c;
	}
	template<class U, typename enable_if<is_integral<U>::value>::type* = nullptr>
	matrix &inplace_power(U e){
		assert(n == m && e >= 0);
		matrix res(n, n, T(1));
		for(; e; *this *= *this, e >>= 1) if(e & 1) res *= *this;
		return *this = res;
	}
	template<class U>
	matrix power(U e) const{
		return matrix(*this).inplace_power(e);
	}
	matrix &inplace_transpose(){
		assert(n == m);
		for(auto i = 0; i < n; ++ i) for(auto j = i + 1; j < n; ++ j) swap(data[i][j], data[j][i]);
		return *this;
	}
	matrix transpose() const{
		if(n == m) return matrix(*this).inplace_transpose();
		matrix res(m, n);
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res(j, i) = data[i][j];
		return res;
	}
	range_t operator*(const domain_t &v) const{
		assert(m == (int)v.size());
		vector<T> res(n, T(0));
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) res[i] += data[i][j] * v[j];
		return res;
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix &, T, int> inplace_REF(){
		if(n == 0) return {*this, T(1), 0};
		T det = 1;
		int rank = 0;
		for(auto j = 0; j < m; ++ j){
			if constexpr(is_floating_point_v<T>){
				static const T eps = 1e-9;
				int pivot = rank;
				for(auto i = rank + 1; i < n; ++ i) if(abs(data[pivot][j]) < abs(data[i][j])) pivot = i;
				if(rank != pivot){
					swap(data[rank], data[pivot]);
					det *= -1;
				}
				if(abs(data[rank][j]) <= eps) continue;
				det *= data[rank][j];
				T inv = 1 / data[rank][j];
				for(auto i = rank + 1; i < n; ++ i) if(abs(data[i][j]) > eps){
					T coef = data[i][j] * inv;
					for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[rank][k];
				}
				++ rank;
			}
			else{
				for(auto i = rank + 1; i < n; ++ i) while(data[i][j]){
					T q;
					if constexpr(is_integral_v<T> || is_same_v<T, __int128_t> || is_same_v<T, __uint128_t>) q = data[rank][j] / data[i][j];
					else q = data[rank][j].data / data[i][j].data;
					if(q) for(auto k = j; k < m; ++ k) data[rank][k] -= q * data[i][k];
					swap(data[rank], data[i]);
					det *= -1;
				}
				if(rank == j) det *= data[rank][j];
				else det = T(0);
				if(data[rank][j]) ++ rank;
			}
			if(rank == n) break;
		}
		return {*this, det, rank};
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix, T, int> REF() const{
		return matrix(*this).inplace_REF();
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix &, T, int> inplace_REF_field(){
		if(n == 0) return {*this, T(1), 0};
		T det = T(1);
		int rank = 0;
		for(auto j = 0; j < m; ++ j){
			int pivot = -1;
			for(auto i = rank; i < n; ++ i) if(data[i][j] != T(0)){
				pivot = i;
				break;
			}
			if(!~pivot){
				det = T(0);
				continue;
			}
			if(rank != pivot){
				swap(data[rank], data[pivot]);
				det *= -1;
			}
			det *= data[rank][j];
			T inv = 1 / data[rank][j];
			for(auto i = rank + 1; i < n; ++ i) if(data[i][j] != T(0)){
				T coef = data[i][j] * inv;
				for(auto k = j; k < m; ++ k) data[i][k] -= coef * data[j][k];
			}
			++ rank;
			if(rank == n) break;
		}
		return {*this, det, rank};
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Returns {REF matrix, determinant, rank}
	tuple<matrix, T, int> REF_field() const{
		return matrix(*this).inplace_REF_field();
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	optional<matrix> inverse() const{
		assert(n == m);
		if(n == 0) return *this;
		auto a = data;
		vector<vector<T>> res(n, vector<T>(n, T(0)));
		for(auto i = 0; i < n; ++ i) res[i][i] = T(1);
		for(auto j = 0; j < n; ++ j){
			int rank = j, pivot = -1;
			if(is_floating_point_v<T>){
				static const T eps = 1e-9;
				pivot = rank;
				for(auto i = rank + 1; i < n; ++ i) if(abs(a[pivot][j]) < abs(a[i][j])) pivot = i;
				if(abs(a[pivot][j]) <= eps) return {};
			}
			else{
				for(auto i = rank; i < n; ++ i) if(a[i][j] != T(0)){
					pivot = i;
					break;
				}
				if(!~pivot) return {};
			}
			swap(a[rank], a[pivot]), swap(res[rank], res[pivot]);
			T inv = 1 / a[rank][j];
			for(auto k = 0; k < n; ++ k) a[rank][k] *= inv, res[rank][k] *= inv;
			for(auto i = 0; i < n; ++ i){
				if constexpr(is_floating_point_v<T>){
					static const T eps = 1e-9;
					if(i != rank && abs(a[i][j]) > eps){
						T d = a[i][j];
						for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k];
					}
				}
				else if(i != rank && a[i][j] != T(0)){
					T d = a[i][j];
					for(auto k = 0; k < n; ++ k) a[i][k] -= d * a[rank][k], res[i][k] -= d * res[rank][k];
				}
			}
		}
		return res;
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
	T determinant() const{
		assert(n == m);
		return get<1>(REF());
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	T determinant_field() const{
		assert(n == m);
		return get<1>(REF_field());
	}
	// Assumes T is either a floating, integral, or a modular type.
	// If T is a floating type, O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	// Otherwise, O(n^2 * log(size)) divisions with O(n^3) additions, subtractions, and multiplications.
	int rank() const{
		return get<2>(REF());
	}
	// Assumes T is a field.
	// O(n) divisions with O(n^3) additions, subtractions, and multiplications.
	int rank_field() const{
		return get<2>(REF_field());
	}
	// O(n * 2^n)
	T permanent() const{
		assert(n <= 30 && n == m);
		T perm = n ? 0 : 1;
		vector<T> sum(n);
		for(auto order = 1; order < 1 << n; ++ order){
			int j = __lg(order ^ order >> 1 ^ order - 1 ^ order - 1 >> 1), sign = (order ^ order >> 1) & 1 << j ? 1 : -1;
			T prod = order & 1 ? -1 : 1;
			if((order ^ order >> 1) & 1 << j) for(auto i = 0; i < n; ++ i) prod *= sum[i] += data[i][j];
			else for(auto i = 0; i < n; ++ i) prod *= sum[i] -= data[i][j];
			perm += prod;
		}
		return perm * (n & 1 ? -1 : 1);
	}
	template<class output_stream>
	friend output_stream &operator<<(output_stream &out, const matrix &a){
		out << "\n";
		for(auto i = 0; i < a.n; ++ i){
			for(auto j = 0; j < a.m; ++ j){
				out << a(i, j) << " ";
			}
			out << "\n";
		}
		return out;
	}
	matrix(int n, int m, T init_diagonal = T(0), T init_off_diagonal = T(0)): n(n), m(m){
		data.assign(n, vector<T>(m, T(0)));
		for(auto i = 0; i < n; ++ i) for(auto j = 0; j < m; ++ j) data[i][j] = i == j ? init_diagonal : init_off_diagonal;
	}
	matrix(const vector<vector<T>> &arr, int _n = -1, int _m = -1): n(~_n ? _n : (int)arr.size()), m(~_m ? _m : (int)arr[0].size()), data(arr){ }
	static matrix additive_identity(int n, int m){
		return matrix(n, m, T(0), T(0));
	}
	static matrix multiplicative_identity(int n, int m){
		return matrix(n, m, T(1), T(0));
	}
};
template<class T>
matrix<T> operator*(T c, matrix<T> a){
	for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) a(i, j) = c * a(i, j);
	return a;
}
// Multiply a row vector v on the left
template<class T>
typename matrix<T>::domain_t operator*(const typename matrix<T>::range_t &v, const matrix<T> &a){
	assert(a.n == (int)size(v));
	typename matrix<T>::domain_t res(a.m, T(0));
	for(auto i = 0; i < a.n; ++ i) for(auto j = 0; j < a.m; ++ j) res[j] += v[i] * a(i, j);
	return res;
}

int main(){
	cin.tie(0)->sync_with_stdio(0);
	cin.exceptions(ios::badbit | ios::failbit);
	cout << fixed << setprecision(5);
	auto __solve_tc = [&](auto __tc_num)->int{
		array<array<double, 2>, 2> a;
		for(auto i = 0; i < 2; ++ i){
			for(auto j = 0; j < 2; ++ j){
				cin >> a[i][j];
			}
		}
		double det = max(0.0, (a[0][0] - a[1][1]) * (a[0][0] - a[1][1]) + 4 * a[0][1] * a[1][0]);
		if(det <= 1e-11){
			for(auto i = 0; i < 2; ++ i){
				for(auto j = 0; j < 2; ++ j){
					cout << cbrt(a[i][j]) << " \n"[j];
				}
			}
		}
		else{
			double alpha = ((a[0][0] + a[1][1]) + sqrt(det)) / 2;
			double beta = ((a[0][0] + a[1][1]) - sqrt(det)) / 2;
			matrix<double> basis(2, 2), mat(2, 2);
			double coef = 0.31231;
			basis(0, 0) = a[0][1] + coef * (a[1][1] - alpha);
			basis(0, 1) = a[0][1] + coef * (a[1][1] - beta);
			basis(1, 0) = alpha - a[0][0] - coef * a[1][0], basis(1, 1) = beta - a[0][0] - coef * a[1][0];
			mat(0, 0) = cbrt(alpha), mat(1, 1) = cbrt(beta);
			mat = basis * mat * *basis.inverse();
			for(auto i = 0; i < 2; ++ i){
				for(auto j = 0; j < 2; ++ j){
					cout << mat(i, j) << " \n"[j];
				}
			}
		}
		return 0;
	};
	int __tc_cnt;
	cin >> __tc_cnt;
	for(auto __tc_num = 0; __tc_num < __tc_cnt; ++ __tc_num){
		__solve_tc(__tc_num);
	}
	return 0;
}

/*

*/

////////////////////////////////////////////////////////////////////////////////////////
//                                                                                    //
//                                   Coded by Aeren                                   //
//                                                                                    //
////////////////////////////////////////////////////////////////////////////////////////
0