結果
問題 | No.2428 Returning Shuffle |
ユーザー | asaringo |
提出日時 | 2023-08-26 18:56:58 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 219 ms / 2,000 ms |
コード長 | 9,405 bytes |
コンパイル時間 | 2,337 ms |
コンパイル使用メモリ | 220,252 KB |
実行使用メモリ | 23,552 KB |
最終ジャッジ日時 | 2024-06-07 14:29:00 |
合計ジャッジ時間 | 6,586 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 135 ms
23,464 KB |
testcase_01 | AC | 219 ms
23,552 KB |
testcase_02 | AC | 213 ms
23,348 KB |
testcase_03 | AC | 31 ms
11,904 KB |
testcase_04 | AC | 31 ms
11,876 KB |
testcase_05 | AC | 32 ms
11,728 KB |
testcase_06 | AC | 30 ms
11,728 KB |
testcase_07 | AC | 31 ms
11,812 KB |
testcase_08 | AC | 31 ms
11,744 KB |
testcase_09 | AC | 31 ms
11,776 KB |
testcase_10 | AC | 32 ms
11,724 KB |
testcase_11 | AC | 30 ms
11,784 KB |
testcase_12 | AC | 31 ms
11,776 KB |
testcase_13 | AC | 32 ms
11,904 KB |
testcase_14 | AC | 32 ms
11,776 KB |
testcase_15 | AC | 31 ms
11,872 KB |
testcase_16 | AC | 31 ms
11,832 KB |
testcase_17 | AC | 31 ms
11,776 KB |
testcase_18 | AC | 32 ms
11,780 KB |
testcase_19 | AC | 161 ms
23,424 KB |
testcase_20 | AC | 163 ms
23,476 KB |
testcase_21 | AC | 31 ms
11,904 KB |
testcase_22 | AC | 31 ms
11,764 KB |
testcase_23 | AC | 31 ms
11,828 KB |
testcase_24 | AC | 164 ms
23,416 KB |
testcase_25 | AC | 168 ms
23,440 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define overload2(a, b, c, ...) c #define overload3(a, b, c, d, ...) d #define overload4(a, b, c, d, e ...) e #define overload5(a, b, c, d, e, f ...) f #define overload6(a, b, c, d, e, f, g ...) g #define fast_io ios::sync_with_stdio(false); cin.tie(nullptr); #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") typedef long long ll; typedef long double ld; #define chmin(a,b) a = min(a,b); #define chmax(a,b) a = max(a,b); #define bit_count(x) __builtin_popcountll(x) #define leading_zero_count(x) __builtin_clz(x) #define trailing_zero_count(x) __builtin_ctz(x) #define gcd(a,b) __gcd(a,b) #define lcm(a,b) a / gcd(a,b) * b #define rep(...) overload3(__VA_ARGS__, rrep, rep1)(__VA_ARGS__) #define rep1(i,n) for(int i = 0 ; i < n ; i++) #define rrep(i,a,b) for(int i = a ; i < b ; i++) #define repi(it,S) for(auto it = S.begin() ; it != S.end() ; it++) #define pt(a) cout << a << endl; #define print(...) printall(__VA_ARGS__); #define debug(a) cout << #a << " " << a << endl; #define all(a) a.begin(), a.end() #define endl "\n"; #define v1(T,n,a) vector<T>(n,a) #define v2(T,n,m,a) vector<vector<T>>(n,v1(T,m,a)) #define v3(T,n,m,k,a) vector<vector<vector<T>>>(n,v2(T,m,k,a)) #define v4(T,n,m,k,l,a) vector<vector<vector<vector<T>>>>(n,v3(T,m,k,l,a)) template<typename T,typename U>istream &operator>>(istream&is,pair<T,U>&p){is>>p.first>>p.second;return is;} template<typename T,typename U>ostream &operator<<(ostream&os,const pair<T,U>&p){os<<p.first<<" "<<p.second;return os;} template<typename T>istream &operator>>(istream&is,vector<T>&v){for(T &in:v){is>>in;}return is;} template<typename T>ostream &operator<<(ostream&os,const vector<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;} template<typename T>istream &operator>>(istream&is,vector<vector<T>>&v){for(T &in:v){is>>in;}return is;} template<typename T>ostream &operator<<(ostream&os,const vector<vector<T>>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?"\n":"");}return os;} template<typename T>ostream &operator<<(ostream&os,const set<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;} template<typename T>ostream &operator<<(ostream&os,const multiset<T>&v){for(auto it=v.begin();it!=v.end();){os<<*it<<((++it)!=v.end()?" ":"");}return os;} template<class... Args> void printall(Args... args){for(auto i:initializer_list<common_type_t<Args...>>{args...}) cout<<i<<" ";cout<<endl;} int n, m; struct Eratosthenes{ private : int n ; vector<int> factor ; // factor[i]: i を割ることのできる素数 vector<int> prime ; // 素数 vector<bool> isprime; // 素数判定 vector<int> mobius; // メビウス関数 void build(){ for(int i = 2 ; i < n ; ++i){ if(factor[i] != -1) continue ; prime.push_back(i) ; isprime[i] = true ; for(int j = i ; j < n ; j += i) { factor[j] = i ; if((j / i) % i == 0) mobius[j] = 0; else mobius[j] = -mobius[j]; } } } void init_(int n_){ n = max(n_,303030) ; factor.resize(n,-1) ; isprime.resize(n,false) ; mobius.resize(n,1); build() ; } // 素因数分解 20 -> { (5,1), (2,2) } vector<pair<int,int>> prime_factorization_(int k){ vector<pair<int,int>> res ; while(k != 1){ int ex = 0 ; int d = factor[k] ; while(k % d == 0){ k /= d ; ex++ ; } res.push_back(pair<int,int>(d,ex)) ; } return res ; } // 素因数分解の素因数のみ 20 -> { 5, 2 } vector<int> prime_factor_(int k){ vector<int> res ; while(k != 1){ int ex = 0 ; int d = factor[k] ; while(k % d == 0){ k /= d ; ex++ ; } res.push_back(d) ; } return res ; } // オイラーのファイ関数 int get_euler_phi_(int k) { int euler = k ; while(k != 1){ int d = factor[k] ; while(k % d == 0) k /= d ; euler -= euler / d ; } return euler ; } // 高速ゼータ変換 template<typename T> vector<T> zeta_transform_(vector<T> f){ int n = f.size(); for(int i = 2 ; i < n ; i++){ if(!isprime[i]) continue; for(int j = (n - 1) / i ; j > 0 ; --j){ f[j] += f[j * i]; } } return f; } // 高速メビウス変換 template<typename T> vector<T> mobius_transform_(vector<T> F){ int n = F.size(); for(int i = 2 ; i < n ; ++i){ if(!isprime[i]) continue; for(int j = 1 ; j * i < n ; ++j){ F[j] -= F[j * i]; } } return F; } template<typename T> vector<T> gcd_convolution_(vector<T> f, vector<T> g){ int n = max((int)f.size(), (int)g.size()); vector<T> F = zeta_transform_(f); vector<T> G = zeta_transform_(g); vector<T> H(n); for(int i = 1 ; i < min((int)F.size(), (int)G.size()) ; ++i) H[i] = F[i] * G[i]; return mobius_transform_(H); } public : Eratosthenes(){} Eratosthenes(int n_){ init_(n_); } void init(int n_) { init_(n_); } vector<pair<int,int>> prime_factorization(int k) { return prime_factorization_(k); } vector<int> prime_factor(int k) { return prime_factor_(k); } int get_euler_phi(int k) { return get_euler_phi_(k); } int get_mobius(int k) { return mobius[k]; } vector<int> get_prime() { return prime ; } bool is_prime(int i) { return isprime[i] ; } template<typename T> vector<T> zeta_transform(vector<T> f) { return zeta_transform_(f); } template<typename T> vector<T> mobius_transform(vector<T> F) { return mobius_transform_(F); } template<typename T> vector<T> gcd_convolution(vector<T> f, vector<T> g) { return gcd_convolution_(f, g); } }; const int mod = 998244353 ; template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< mod >; void solve(){ Eratosthenes ets(1010101); cin >> n >> m; vector<int> A(n); rep(i,n) A[i] = i; auto S = A; rep(i,m){ int t; cin >> t; vector<int> V(t); cin >> V; for(int &v : V) v--; for(int i = t - 1; i > 0; i--) { int a = V[(i+1)%t]; int b = V[i]; swap(A[a],A[b]); } } rep(i,n){ S[A[i]] = i; } vector<bool> B(n,false); vector<int> C(n+1,0); rep(i,n){ if(B[i]) continue; int v = i; int cnt = 0; while(1){ if(B[v]) break; B[v] = 1; v = S[v]; cnt++; } auto V = ets.prime_factorization(cnt); for(auto [p, ex] : V) chmax(C[p], ex); } modint res = 1; rep(i,n+1){ if(C[i] == 0) continue; while(C[i]--) res *= i; } pt(res) } int main(){ fast_io int t = 1; // cin >> t; rep(i,t) solve(); }