結果
問題 | No.2428 Returning Shuffle |
ユーザー | い |
提出日時 | 2023-08-26 20:03:38 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 219 ms / 2,000 ms |
コード長 | 10,180 bytes |
コンパイル時間 | 4,013 ms |
コンパイル使用メモリ | 271,976 KB |
実行使用メモリ | 23,068 KB |
最終ジャッジ日時 | 2024-06-07 15:34:13 |
合計ジャッジ時間 | 6,313 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 114 ms
18,884 KB |
testcase_01 | AC | 216 ms
23,068 KB |
testcase_02 | AC | 219 ms
22,936 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 151 ms
22,100 KB |
testcase_20 | AC | 150 ms
22,356 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 3 ms
5,376 KB |
testcase_23 | AC | 3 ms
5,376 KB |
testcase_24 | AC | 137 ms
18,856 KB |
testcase_25 | AC | 142 ms
18,932 KB |
ソースコード
#pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using i128 = __int128_t; template <typename F> using fn = function<F>; #define all(a) a.begin(), a.end() #define allr(a) a.rbegin(), a.rend() template <class A> int len(const A &a) { return a.size(); } #define eb emplace_back #define pb push_back #define elif else if template <typename T> using vec = vector<T>; template <typename T> using vec2 = vec<vec<T>>; template <typename T> using vec3 = vec<vec2<T>>; template <typename T> using vec4 = vec<vec3<T>>; template <typename T> using vec5 = vec<vec4<T>>; #define VEC(T, a, ...) \ vec<T> a(__VA_ARGS__) #define VEC2(T, a, n, ...) \ vector a(n, vec<T>(__VA_ARGS__)); #define VEC3(T, a, n, m, ...) \ vector a( \ n, \ vector(m, vec<T>(__VA_ARGS__)) \ ); #define VEC4(T, a, n, m, l, ...) \ vector a( \ n, \ vector( \ m, \ vector(l, vec<T>(__VA_ARGS__)) \ ) \ ); #define eval_4(a, b, c, d, e, ...) e #define loop while (1) #define rep(n) \ for (int __ = 0; __ < n; __++) #define range_1(i, n) \ for (int i = 0; i < n; i++) #define range_2(i, a, b) \ for (ll i = a; i < b; i++) #define range_3(i, a, b, c) \ for (ll i = a; i < b; i += c) #define range(...) \ eval_4(__VA_ARGS__, range_3, range_2, range_1, rep)( \ __VA_ARGS__ \ ) #define ranger_1(i, n) \ for (int i = n; i-- > 0;) #define ranger_2(i, a, b) \ for (ll i = b; i-- > a;) #define ranger_3(i, a, b, c) \ for (ll i = b - 1; i >= a; i -= c) #define range_rev(...) \ eval_4(__VA_ARGS__, ranger_3, ranger_2, ranger_1)( \ __VA_ARGS__ \ ) #define iter(x, a) \ for (const auto &x : a) #define iter_mut(x, a) \ for (auto &&x : a) template <typename T, typename U> istream & operator>>(istream &in, pair<T, U> &p) { return in >> p.first >> p.second; } template <typename T, typename U> ostream &operator<<( ostream &out, pair<T, U> &p ) { out << p.first << ' ' << p.second; return out; } template <int k = 0, class T> void read_tup(istream &in, T &x) { if constexpr (tuple_size<T>::value > k) { in >> get<k>(x); read_tup<k + 1>(in, x); } } template <class... T> istream &operator>>( istream &in, tuple<T...> &x ) { read_tup(in, x); return in; } template <int k = 0, class T> void out_tup(ostream &out, T &x) { if constexpr (tuple_size<T>::value > k) { if constexpr (k > 0) { out << ' '; } out << get<k>(x); out_tup<k + 1>(out, x); } } template <class... T> ostream &operator<<( ostream &out, tuple<T...> &x ) { out_tup(out, x); return out; } template <typename T> auto operator<<(ostream &out, vec<T> a) -> ostream & { range(i, len(a)) { if (i) { out << ' '; } out << a[i]; } return out; } template <typename T> auto operator<<(ostream &out, vec2<T> a) -> ostream & { iter_mut(x, a) out << x << '\n'; return out; } template <typename T> auto operator>>(istream &in, vec<T> &a) -> istream & { iter_mut(x, a) in >> x; return in; } template <typename... T> void in(T &...a) { (cin >> ... >> a); } template <class T, class... U> void out(T a, const U... b) { cout << a; ((cout << ' ' << b), ...); cout << '\n'; } template <typename T = int> vec<T> iota(int n, T v = 0) { vec<int> a(n); std::iota(all(a), v); return a; } template <class T> using max_queue = priority_queue<T>; template <class T> using min_queue = priority_queue<T, vec<T>, greater<T>>; template <typename T> T pop(queue<T> &q) { T v = q.front(); q.pop(); return v; } template <typename T> T pop(deque<T> &q) { T v = q.front(); q.pop_front(); return v; } template <typename T> T pop(vec<T> &q) { T v = q.back(); q.pop_back(); return v; } template <typename T> T pop(max_queue<T> &q) { T v = q.top(); q.pop(); return v; } template <typename T> T pop(min_queue<T> &q) { T v = q.top(); q.pop(); return v; } template <typename T> T max(const vec<T> &a) { return *max_element(all(a)); } template <typename T> T min(const vec<T> &a) { return *min_element(all(a)); } int topbit(int x) { return 31 - __builtin_clz(x); } template <class T> bool operator==( const vec<T> &a, const vec<T> &b ) { int n = len(a); if (len(b) != n) { return false; } range(i, n) { if (a[i] != b[i]) { return false; } } return true; } template <class T, class U> bool chmin(T &a, const U &b) { return b < a ? a = b, 1 : 0; } template <class T, class U> bool chmax(T &a, const U &b) { return b > a ? a = b, 1 : 0; } int popcnt(int x) { return __builtin_popcount(x); } template <class T, class U> T sum(const vec<U> &a) { return accumulate(all(a), 0ll); } template <class T> void unique(vec<T> &a) { sort(all(a)); a.erase(std::unique(all(a)), a.end()); } template <class T, class A> int lb(const A &a, const T &x) { auto p = lower_bound(all(a), x); return distance(a.begin(), p); } template <class T, class A> int ub(const A &a, const T &x) { auto p = upper_bound(all(a), x); return distance(a.begin(), p); } template <class A> vec<int> argsort(const A &a) { int n = len(a); auto b = iota(n); sort(all(b), [&](int i, int j) { return a[i] < a[j]; }); return b; } template <class T> int ctz(T n) { return __builtin_ctzll(n); } template <typename T> auto divmod(T a, T b) -> pair<T, T> { T q = a / b; return {q, a - q * b}; } #ifdef DEBUG #define dbg(...) out(__VA_ARGS__); #else #define dbg(...) ; #endif #ifdef DEBUG #define dbg_assert(...) \ assert(__VA_ARGS__); #else #define dbg_assert(...) ; #endif // define yes/no #define yesno(y, n) \ void yes(bool f = 1) { \ out(f ? #y : #n); \ } \ void no() { \ out(#n); \ } yesno(yes, no); // yesno(Yes, No); // yesno(YES, NO); // const/runtime // id <= 0, call set_mod template <int id = 0> class mint { ll v; static int mod; static constexpr int m() { return id > 0 ? id : mod; } public: static void set_mod(int m) { assert(m > 0); mod = m; } constexpr mint(): v() { } mint(ll v): v(v) { norm(); } void norm() { if (v < -m() || m() <= v) { v %= m(); } if (v < 0) { v += m(); } } int operator()() const { return v; } template <class T> explicit operator T() const { return static_cast<T>(v); } mint operator-() const { return v ? m() - v : 0; } mint &operator+=(const mint &a) { if ((v += a.v) >= m()) { v -= m(); } return *this; } mint &operator-=(const mint &a) { if ((v -= a.v) < 0) { v += m(); } return *this; } mint &operator*=(const mint &a) { v *= a.v; norm(); return *this; } mint inv() const { int a = m(), b = v, u = 0, v = 1, q; while (b) { q = a / b; swap(u -= q * v, v); swap(a -= q * b, b); } return u; } mint pow(ll t) const { if (t < 0) { return inv().pow(-t); } mint y = 1, x(v); while (t) { if (t & 1) { y *= x; } x *= x; t >>= 1; } return y; } mint &operator/=(const mint &a) { return *this *= a.inv(); } auto operator++() -> mint & { return *this += 1; } auto operator--() -> mint & { return *this -= 1; } auto operator++(int) -> mint { mint a(*this); *this += 1; return a; } auto operator--(int) -> mint { mint a(*this); *this -= 1; return a; } friend mint operator+( const mint &a, const mint &b ) { return mint(a) += b; } friend mint operator-( const mint &a, const mint &b ) { return mint(a) -= b; } friend mint operator*( const mint &a, const mint &b ) { return mint(a) *= b; } friend mint operator/( const mint &a, const mint &b ) { return mint(a) /= b; } friend bool operator==( const mint &a, const mint &b ) { return a.v == b.v; } friend istream & operator>>(istream &i, mint &x) { i >> x.v; x.norm(); return i; } friend ostream &operator<<( ostream &o, const mint &x ) { return o << x.v; } }; template <int id> int mint<id>::mod = 1; using mint107 = mint<1'000'000'007>; using mint998 = mint<998'244'353>; using mint_runtime = mint<0>; class functional_graph { public: vec<int> a; // flatten cycles vec<int> start; // cycle start in a vec<int> sz; // cycle size vec<int> ord; // ord in cycle vec<int> id; // cycle id functional_graph(const vec<int> &f) { int n = len(f); a.reserve(n); id = vec<int>(n, -1); ord = vec<int>(n, -1); int j = 0; range(i, n) { if (id[i] != -1) { continue; } start.pb(len(a)); sz.pb(0); range(k, n) { if (id[i] != -1) { break; } sz[j]++; id[i] = j; ord[i] = k; a.pb(i); i = f[i]; } j++; } } }; template <class T> auto factorize(T n) -> vec<pair<T, int>> { vec<pair<T, int>> f; for (T i = 2; i * i <= n; ++i) { if (n % i) { continue; } int e = 0; do { ++e; n /= i; } while (n % i == 0); f.eb(i, e); } if (n != 1) { f.eb(n, 1); } return f; } // prime factorize lcm(a) template <class T> vec<int> factorize_lcm(const vec<T> &a ) { vec<int> c; iter(x, a) { for (auto &[p, e] : factorize(x)) { if (p >= len(c)) { c.resize(p + 1); } chmax(c[p], e); } } return c; } void solve() { using mint = mint998; int n, m; in(n, m); auto f = iota(n); rep(m) { int t; in(t); vec<int> s(t); in(s); iter_mut(x, s) x--; int x = f[s[0]]; range(i, 1, t) { swap(x, f[s[i]]); } f[s[0]] = x; } auto fg = functional_graph(f); auto c = factorize_lcm(fg.sz); mint res = 1; range(i, len(c)) { res *= mint(i).pow(c[i]); } out(res); } int main() { ios::sync_with_stdio(0); cin.tie(0); // cout << setprecision(16); int t = 1; // in(t); while (t--) { solve(); } }