結果

問題 No.1526 Sum of Mex 2
ユーザー koba-e964
提出日時 2023-08-28 13:07:28
言語 Rust
(1.83.0 + proconio)
結果
WA  
実行時間 -
コード長 8,108 bytes
コンパイル時間 13,390 ms
コンパイル使用メモリ 405,068 KB
実行使用メモリ 10,240 KB
最終ジャッジ日時 2024-12-29 12:46:37
合計ジャッジ時間 20,562 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 2 WA * 30
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `BufWriter`
 --> src/main.rs:5:22
  |
5 | use std::io::{Write, BufWriter};
  |                      ^^^^^^^^^
  |
  = note: `#[warn(unused_imports)]` on by default

warning: unused import: `Write`
 --> src/main.rs:5:15
  |
5 | use std::io::{Write, BufWriter};
  |               ^^^^^

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::{Write, BufWriter};
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
// whose elements are elements of monoid T. Note that constructing this tree requires the identity
// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp
// Verified by: https://judge.yosupo.jp/submission/68794
// https://atcoder.jp/contests/joisc2021/submissions/27734236
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n],
lazy: vec![R::upe(); n],
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let mut ret = Self::new(a.len());
let n = ret.n;
for i in 0..a.len() {
ret.dat[n + i] = a[i];
}
for i in (1..n).rev() {
ret.update_node(i);
}
ret
}
#[inline]
pub fn set(&mut self, idx: usize, x: R::T) {
debug_assert!(idx < self.n);
self.apply_any(idx, |_t| x);
}
#[inline]
pub fn apply(&mut self, idx: usize, f: R::U) {
debug_assert!(idx < self.n);
self.apply_any(idx, |t| R::update(t, f));
}
pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx] = f(self.dat[idx]);
for i in 1..self.dep + 1 {
self.update_node(idx >> i);
}
}
pub fn get(&mut self, idx: usize) -> R::T {
debug_assert!(idx < self.n);
let idx = idx + self.n;
for i in (1..self.dep + 1).rev() {
self.push(idx >> i);
}
self.dat[idx]
}
/* [l, r) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return R::e(); }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
let mut sml = R::e();
let mut smr = R::e();
while l < r {
if (l & 1) != 0 {
sml = R::biop(sml, self.dat[l]);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
smr = R::biop(self.dat[r], smr);
}
l >>= 1;
r >>= 1;
}
R::biop(sml, smr)
}
/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */
#[inline]
pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) {
let (l, r) = (rng.start, rng.end);
debug_assert!(l <= r && r <= self.n);
if l == r { return; }
let mut l = l + self.n;
let mut r = r + self.n;
for i in (1..self.dep + 1).rev() {
if ((l >> i) << i) != l { self.push(l >> i); }
if ((r >> i) << i) != r { self.push((r - 1) >> i); }
}
{
let l2 = l;
let r2 = r;
while l < r {
if (l & 1) != 0 {
self.all_apply(l, f);
l += 1;
}
if (r & 1) != 0 {
r -= 1;
self.all_apply(r, f);
}
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for i in 1..self.dep + 1 {
if ((l >> i) << i) != l { self.update_node(l >> i); }
if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }
}
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);
}
fn all_apply(&mut self, k: usize, f: R::U) {
self.dat[k] = R::update(self.dat[k], f);
if k < self.n {
self.lazy[k] = R::upop(self.lazy[k], f);
}
}
fn push(&mut self, k: usize) {
let val = self.lazy[k];
self.all_apply(2 * k, val);
self.all_apply(2 * k + 1, val);
self.lazy[k] = R::upe();
}
}
enum Affine {}
type AffineInt = i64; // Change here to change type
impl ActionRing for Affine {
type T = (AffineInt, AffineInt); // data, size
type U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + b
fn biop((x, s): Self::T, (y, t): Self::T) -> Self::T {
(x + y, s + t)
}
fn update((x, s): Self::T, (a, b): Self::U) -> Self::T {
(x * a + b * s, s)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let (a, b) = fst;
let (c, d) = snd;
(a * c, b * c + d)
}
fn e() -> Self::T {
(0.into(), 0.into())
}
fn upe() -> Self::U { // identity for upop
(1.into(), 0.into())
}
}
fn main() {
input! {
n: usize,
x: [usize1; n],
}
let nn = n as i64;
let mut ev = vec![];
let mut a = vec![n; n + 1];
for i in (0..n).rev() {
ev.push((x[i], a[x[i]]));
a[x[i]] = i;
}
ev.reverse();
let mut ans = 0i64;
let mut st = LazySegTree::<Affine>::new(n);
let mut ma = 0;
for i in 0..n {
ma = max(ma, a[i]);
st.set(i, (ma as i64, 1));
}
for i in 0..n {
let sum = st.query(0..n).0;
ans += nn * (nn + 1) - i as i64 - sum;
let (idx, to) = ev[i];
a[idx] = to;
let mut pass = idx;
let mut fail = n;
while fail - pass > 1 {
let mid = (fail + pass) / 2;
if st.get(mid).0 < to as i64 {
pass = mid;
} else {
fail = mid;
}
}
st.update(idx..pass + 1, (0, to as i64));
}
println!("{}", ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0