結果
問題 | No.1526 Sum of Mex 2 |
ユーザー |
|
提出日時 | 2023-08-28 13:13:30 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 233 ms / 3,000 ms |
コード長 | 7,774 bytes |
コンパイル時間 | 13,354 ms |
コンパイル使用メモリ | 401,692 KB |
実行使用メモリ | 10,240 KB |
最終ジャッジ日時 | 2024-12-29 13:00:16 |
合計ジャッジ時間 | 17,001 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 |
ソースコード
use std::cmp::*;// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, usize1) => (read_value!($next, usize) - 1);($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}// Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array// whose elements are elements of monoid T. Note that constructing this tree requires the identity// element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)// Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp// Verified by: https://judge.yosupo.jp/submission/68794// https://atcoder.jp/contests/joisc2021/submissions/27734236pub trait ActionRing {type T: Clone + Copy; // datatype U: Clone + Copy + PartialEq + Eq; // actionfn biop(x: Self::T, y: Self::T) -> Self::T;fn update(x: Self::T, a: Self::U) -> Self::T;fn upop(fst: Self::U, snd: Self::U) -> Self::U;fn e() -> Self::T;fn upe() -> Self::U; // identity for upop}pub struct LazySegTree<R: ActionRing> {n: usize,dep: usize,dat: Vec<R::T>,lazy: Vec<R::U>,}impl<R: ActionRing> LazySegTree<R> {pub fn new(n_: usize) -> Self {let mut n = 1;let mut dep = 0;while n < n_ { n *= 2; dep += 1; } // n is a power of 2LazySegTree {n: n,dep: dep,dat: vec![R::e(); 2 * n],lazy: vec![R::upe(); n],}}#[allow(unused)]pub fn with(a: &[R::T]) -> Self {let mut ret = Self::new(a.len());let n = ret.n;for i in 0..a.len() {ret.dat[n + i] = a[i];}for i in (1..n).rev() {ret.update_node(i);}ret}#[inline]pub fn set(&mut self, idx: usize, x: R::T) {debug_assert!(idx < self.n);self.apply_any(idx, |_t| x);}#[inline]pub fn apply(&mut self, idx: usize, f: R::U) {debug_assert!(idx < self.n);self.apply_any(idx, |t| R::update(t, f));}pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) {debug_assert!(idx < self.n);let idx = idx + self.n;for i in (1..self.dep + 1).rev() {self.push(idx >> i);}self.dat[idx] = f(self.dat[idx]);for i in 1..self.dep + 1 {self.update_node(idx >> i);}}pub fn get(&mut self, idx: usize) -> R::T {debug_assert!(idx < self.n);let idx = idx + self.n;for i in (1..self.dep + 1).rev() {self.push(idx >> i);}self.dat[idx]}/* [l, r) (note: half-inclusive) */#[inline]pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T {let (l, r) = (rng.start, rng.end);debug_assert!(l <= r && r <= self.n);if l == r { return R::e(); }let mut l = l + self.n;let mut r = r + self.n;for i in (1..self.dep + 1).rev() {if ((l >> i) << i) != l { self.push(l >> i); }if ((r >> i) << i) != r { self.push((r - 1) >> i); }}let mut sml = R::e();let mut smr = R::e();while l < r {if (l & 1) != 0 {sml = R::biop(sml, self.dat[l]);l += 1;}if (r & 1) != 0 {r -= 1;smr = R::biop(self.dat[r], smr);}l >>= 1;r >>= 1;}R::biop(sml, smr)}/* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */#[inline]pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) {let (l, r) = (rng.start, rng.end);debug_assert!(l <= r && r <= self.n);if l == r { return; }let mut l = l + self.n;let mut r = r + self.n;for i in (1..self.dep + 1).rev() {if ((l >> i) << i) != l { self.push(l >> i); }if ((r >> i) << i) != r { self.push((r - 1) >> i); }}{let l2 = l;let r2 = r;while l < r {if (l & 1) != 0 {self.all_apply(l, f);l += 1;}if (r & 1) != 0 {r -= 1;self.all_apply(r, f);}l >>= 1;r >>= 1;}l = l2;r = r2;}for i in 1..self.dep + 1 {if ((l >> i) << i) != l { self.update_node(l >> i); }if ((r >> i) << i) != r { self.update_node((r - 1) >> i); }}}#[inline]fn update_node(&mut self, k: usize) {self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]);}fn all_apply(&mut self, k: usize, f: R::U) {self.dat[k] = R::update(self.dat[k], f);if k < self.n {self.lazy[k] = R::upop(self.lazy[k], f);}}fn push(&mut self, k: usize) {let val = self.lazy[k];self.all_apply(2 * k, val);self.all_apply(2 * k + 1, val);self.lazy[k] = R::upe();}}enum Affine {}type AffineInt = i64; // Change here to change typeimpl ActionRing for Affine {type T = (AffineInt, AffineInt); // data, sizetype U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + bfn biop((x, s): Self::T, (y, t): Self::T) -> Self::T {(x + y, s + t)}fn update((x, s): Self::T, (a, b): Self::U) -> Self::T {(x * a + b * s, s)}fn upop(fst: Self::U, snd: Self::U) -> Self::U {let (a, b) = fst;let (c, d) = snd;(a * c, b * c + d)}fn e() -> Self::T {(0.into(), 0.into())}fn upe() -> Self::U { // identity for upop(1.into(), 0.into())}}fn main() {input! {n: usize,x: [usize1; n],}let nn = n as i64;let mut ev = vec![];let mut a = vec![n; n + 1];for i in (0..n).rev() {ev.push((x[i], a[x[i]]));a[x[i]] = i;}ev.reverse();let mut ans = 0i64;let mut st = LazySegTree::<Affine>::new(n);let mut ma = 0;for i in 0..n {ma = max(ma, a[i]);st.set(i, (ma as i64, 1));}for i in 0..n {let sum = st.query(0..n).0;ans += nn * (nn + 1) - i as i64 - sum;let (idx, to) = ev[i];if st.get(idx).0 < to as i64 {let mut pass = idx;let mut fail = n;while fail - pass > 1 {let mid = (fail + pass) / 2;if st.get(mid).0 < to as i64 {pass = mid;} else {fail = mid;}}st.update(idx..pass + 1, (0, to as i64));}}println!("{}", ans);}