結果
問題 | No.1526 Sum of Mex 2 |
ユーザー | koba-e964 |
提出日時 | 2023-08-28 13:51:40 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 220 ms / 3,000 ms |
コード長 | 8,544 bytes |
コンパイル時間 | 18,610 ms |
コンパイル使用メモリ | 377,556 KB |
実行使用メモリ | 10,240 KB |
最終ジャッジ日時 | 2024-06-09 09:06:28 |
合計ジャッジ時間 | 21,765 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 8 ms
5,376 KB |
testcase_14 | AC | 10 ms
5,376 KB |
testcase_15 | AC | 12 ms
5,376 KB |
testcase_16 | AC | 58 ms
9,856 KB |
testcase_17 | AC | 42 ms
8,064 KB |
testcase_18 | AC | 6 ms
5,376 KB |
testcase_19 | AC | 4 ms
5,376 KB |
testcase_20 | AC | 25 ms
5,632 KB |
testcase_21 | AC | 58 ms
9,600 KB |
testcase_22 | AC | 34 ms
6,400 KB |
testcase_23 | AC | 60 ms
9,728 KB |
testcase_24 | AC | 61 ms
9,984 KB |
testcase_25 | AC | 60 ms
9,728 KB |
testcase_26 | AC | 63 ms
9,856 KB |
testcase_27 | AC | 63 ms
10,112 KB |
testcase_28 | AC | 64 ms
10,240 KB |
testcase_29 | AC | 60 ms
9,856 KB |
testcase_30 | AC | 64 ms
10,240 KB |
testcase_31 | AC | 59 ms
10,240 KB |
testcase_32 | AC | 58 ms
9,856 KB |
testcase_33 | AC | 220 ms
10,112 KB |
evil_largest | AC | 822 ms
29,052 KB |
ソースコード
use std::cmp::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } // Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array // whose elements are elements of monoid T. Note that constructing this tree requires the identity // element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+) // Reference: https://github.com/atcoder/ac-library/blob/master/atcoder/lazysegtree.hpp // Verified by: https://judge.yosupo.jp/submission/68794 // https://atcoder.jp/contests/joisc2021/submissions/27734236 pub trait ActionRing { type T: Clone + Copy; // data type U: Clone + Copy + PartialEq + Eq; // action fn biop(x: Self::T, y: Self::T) -> Self::T; fn update(x: Self::T, a: Self::U) -> Self::T; fn upop(fst: Self::U, snd: Self::U) -> Self::U; fn e() -> Self::T; fn upe() -> Self::U; // identity for upop } pub struct LazySegTree<R: ActionRing> { n: usize, dep: usize, dat: Vec<R::T>, lazy: Vec<R::U>, } impl<R: ActionRing> LazySegTree<R> { pub fn new(n_: usize) -> Self { let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 LazySegTree { n: n, dep: dep, dat: vec![R::e(); 2 * n], lazy: vec![R::upe(); n], } } #[allow(unused)] pub fn with(a: &[R::T]) -> Self { let mut ret = Self::new(a.len()); let n = ret.n; for i in 0..a.len() { ret.dat[n + i] = a[i]; } for i in (1..n).rev() { ret.update_node(i); } ret } #[inline] pub fn set(&mut self, idx: usize, x: R::T) { debug_assert!(idx < self.n); self.apply_any(idx, |_t| x); } #[inline] pub fn apply(&mut self, idx: usize, f: R::U) { debug_assert!(idx < self.n); self.apply_any(idx, |t| R::update(t, f)); } pub fn apply_any<F: Fn(R::T) -> R::T>(&mut self, idx: usize, f: F) { debug_assert!(idx < self.n); let idx = idx + self.n; for i in (1..self.dep + 1).rev() { self.push(idx >> i); } self.dat[idx] = f(self.dat[idx]); for i in 1..self.dep + 1 { self.update_node(idx >> i); } } pub fn get(&mut self, idx: usize) -> R::T { debug_assert!(idx < self.n); let idx = idx + self.n; for i in (1..self.dep + 1).rev() { self.push(idx >> i); } self.dat[idx] } /* [l, r) (note: half-inclusive) */ #[inline] pub fn query(&mut self, rng: std::ops::Range<usize>) -> R::T { let (l, r) = (rng.start, rng.end); debug_assert!(l <= r && r <= self.n); if l == r { return R::e(); } let mut l = l + self.n; let mut r = r + self.n; for i in (1..self.dep + 1).rev() { if ((l >> i) << i) != l { self.push(l >> i); } if ((r >> i) << i) != r { self.push((r - 1) >> i); } } let mut sml = R::e(); let mut smr = R::e(); while l < r { if (l & 1) != 0 { sml = R::biop(sml, self.dat[l]); l += 1; } if (r & 1) != 0 { r -= 1; smr = R::biop(self.dat[r], smr); } l >>= 1; r >>= 1; } R::biop(sml, smr) } /* ary[i] = upop(ary[i], v) for i in [l, r) (half-inclusive) */ #[inline] pub fn update(&mut self, rng: std::ops::Range<usize>, f: R::U) { let (l, r) = (rng.start, rng.end); debug_assert!(l <= r && r <= self.n); if l == r { return; } let mut l = l + self.n; let mut r = r + self.n; for i in (1..self.dep + 1).rev() { if ((l >> i) << i) != l { self.push(l >> i); } if ((r >> i) << i) != r { self.push((r - 1) >> i); } } { let l2 = l; let r2 = r; while l < r { if (l & 1) != 0 { self.all_apply(l, f); l += 1; } if (r & 1) != 0 { r -= 1; self.all_apply(r, f); } l >>= 1; r >>= 1; } l = l2; r = r2; } for i in 1..self.dep + 1 { if ((l >> i) << i) != l { self.update_node(l >> i); } if ((r >> i) << i) != r { self.update_node((r - 1) >> i); } } } #[inline] fn update_node(&mut self, k: usize) { self.dat[k] = R::biop(self.dat[2 * k], self.dat[2 * k + 1]); } fn all_apply(&mut self, k: usize, f: R::U) { self.dat[k] = R::update(self.dat[k], f); if k < self.n { self.lazy[k] = R::upop(self.lazy[k], f); } } fn push(&mut self, k: usize) { let val = self.lazy[k]; self.all_apply(2 * k, val); self.all_apply(2 * k + 1, val); self.lazy[k] = R::upe(); } } enum Affine {} type AffineInt = i64; // Change here to change type impl ActionRing for Affine { type T = (AffineInt, AffineInt); // data, size type U = (AffineInt, AffineInt); // action, (a, b) |-> x |-> ax + b fn biop((x, s): Self::T, (y, t): Self::T) -> Self::T { (x + y, s + t) } fn update((x, s): Self::T, (a, b): Self::U) -> Self::T { (x * a + b * s, s) } fn upop(fst: Self::U, snd: Self::U) -> Self::U { let (a, b) = fst; let (c, d) = snd; (a * c, b * c + d) } fn e() -> Self::T { (0.into(), 0.into()) } fn upe() -> Self::U { // identity for upop (1.into(), 0.into()) } } // https://yukicoder.me/problems/no/1526 (3.5) // c[i][j] = (A[i+1] 以降で初めて j+1 が出てくる場所) - 1, ただし存在しなければ N // d[i][j] = max(c[i][0], ..., c[i][j]) とする。(0 <= j <= N) // A[i+1] から始まる部分配列について、それらの mex の総和は // N-i + \sum_{j=1}^N (d[i][j] - d[i][j-1])j // = N^2+N-i - \sum_{j=0}^{N-1}d[i][j] である。 // これを計算すれば良いが、これは d[i] を遅延セグメント木で管理することでできる。 // c[i] と c[i-1] の差分は 1 要素であることに着目すると、はじめに右から c の変化の履歴を計算しておき、 // そのあと左から d を計算すればよい. // Similar problems: https://yukicoder.me/problems/no/1349 fn main() { input! { n: usize, x: [usize1; n], } let nn = n as i64; let mut ev = vec![]; let mut a = vec![n; n + 1]; for i in (0..n).rev() { ev.push((x[i], a[x[i]])); a[x[i]] = i; } ev.reverse(); let mut ans = 0i64; let mut st = LazySegTree::<Affine>::new(n); let mut ma = 0; for i in 0..n { ma = max(ma, a[i]); st.set(i, (ma as i64, 1)); } for i in 0..n { let sum = st.query(0..n).0; ans += nn * (nn + 1) - i as i64 - sum; let (idx, to) = ev[i]; if st.get(idx).0 < to as i64 { let mut pass = idx; let mut fail = n; while fail - pass > 1 { let mid = (fail + pass) / 2; if st.get(mid).0 < to as i64 { pass = mid; } else { fail = mid; } } st.update(idx..pass + 1, (0, to as i64)); } } println!("{}", ans); }