結果
問題 | No.2507 Yet Another Subgraph Counting |
ユーザー | suisen |
提出日時 | 2023-08-31 22:03:26 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,219 ms / 2,000 ms |
コード長 | 4,507 bytes |
コンパイル時間 | 372 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 96,996 KB |
最終ジャッジ日時 | 2024-09-15 14:17:30 |
合計ジャッジ時間 | 13,099 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 88 ms
73,088 KB |
testcase_01 | AC | 92 ms
74,880 KB |
testcase_02 | AC | 90 ms
74,112 KB |
testcase_03 | AC | 83 ms
70,400 KB |
testcase_04 | AC | 77 ms
68,992 KB |
testcase_05 | AC | 130 ms
78,464 KB |
testcase_06 | AC | 76 ms
68,352 KB |
testcase_07 | AC | 87 ms
72,960 KB |
testcase_08 | AC | 103 ms
77,952 KB |
testcase_09 | AC | 77 ms
68,480 KB |
testcase_10 | AC | 103 ms
78,208 KB |
testcase_11 | AC | 135 ms
78,848 KB |
testcase_12 | AC | 103 ms
77,952 KB |
testcase_13 | AC | 104 ms
77,952 KB |
testcase_14 | AC | 163 ms
79,488 KB |
testcase_15 | AC | 77 ms
68,352 KB |
testcase_16 | AC | 78 ms
68,864 KB |
testcase_17 | AC | 154 ms
79,616 KB |
testcase_18 | AC | 78 ms
68,736 KB |
testcase_19 | AC | 118 ms
78,208 KB |
testcase_20 | AC | 77 ms
68,992 KB |
testcase_21 | AC | 88 ms
72,832 KB |
testcase_22 | AC | 118 ms
78,336 KB |
testcase_23 | AC | 214 ms
79,648 KB |
testcase_24 | AC | 160 ms
79,488 KB |
testcase_25 | AC | 224 ms
80,932 KB |
testcase_26 | AC | 328 ms
80,676 KB |
testcase_27 | AC | 212 ms
80,044 KB |
testcase_28 | AC | 241 ms
80,880 KB |
testcase_29 | AC | 120 ms
78,720 KB |
testcase_30 | AC | 347 ms
81,136 KB |
testcase_31 | AC | 179 ms
83,356 KB |
testcase_32 | AC | 183 ms
84,016 KB |
testcase_33 | AC | 144 ms
79,744 KB |
testcase_34 | AC | 120 ms
78,208 KB |
testcase_35 | AC | 130 ms
78,336 KB |
testcase_36 | AC | 116 ms
78,208 KB |
testcase_37 | AC | 567 ms
87,712 KB |
testcase_38 | AC | 1,219 ms
96,996 KB |
testcase_39 | AC | 269 ms
85,220 KB |
testcase_40 | AC | 767 ms
88,956 KB |
testcase_41 | AC | 866 ms
88,808 KB |
testcase_42 | AC | 957 ms
94,380 KB |
testcase_43 | AC | 153 ms
80,256 KB |
testcase_44 | AC | 177 ms
83,928 KB |
testcase_45 | AC | 128 ms
78,720 KB |
testcase_46 | AC | 128 ms
78,720 KB |
testcase_47 | AC | 174 ms
83,928 KB |
testcase_48 | AC | 115 ms
78,720 KB |
testcase_49 | AC | 224 ms
84,200 KB |
testcase_50 | AC | 122 ms
78,464 KB |
testcase_51 | AC | 171 ms
80,708 KB |
ソースコード
from typing import List, Tuple N_MAX = 13 popcount = [0] * (1 << N_MAX) for S in range(1, 1 << N_MAX): popcount[S] = popcount[S & (S - 1)] + 1 def subset_zeta(f: List[int]): """ Inplace conversion from f to ζf. ζf is defined as follows: (ζf)(S) = Σ[T⊆S] f(T) """ n = len(f) block = 1 while block < n: offset = 0 while offset < n: for p in range(offset, offset + block): f[p + block] += f[p] offset += 2 * block block <<= 1 def ranked_zeta(f: List[List[int]]): """ Inplace conversion from f to ζf. ζf is defined as follows: (ζf)(S) = Σ[T⊆S] f(T) """ n = len(f) block = 1 while block < n: offset = 0 while offset < n: for p in range(offset, offset + block): a = f[p + block] b = f[p] for i in range(N_MAX + 1): a[i] += b[i] offset += 2 * block block <<= 1 def ranked_mobius(f: List[List[int]]): """ Inplace conversion from f to μf. μf is defined as follows: (μf)(S) = Σ[T⊆S] (-1)^(|S/T|) f(T) """ n = len(f) block = 1 while block < n: offset = 0 while offset < n: for p in range(offset, offset + block): a = f[p + block] b = f[p] for i in range(N_MAX + 1): a[i] -= b[i] offset += 2 * block block <<= 1 def add_rank(f: List[int]): """ Add rank """ return [[(i == popcount[S]) * f[S] for i in range(N_MAX + 1)] for S in range(len(f))] def remove_rank(rf: List[List[int]]): """ Remove rank """ return [rf[S][popcount[S]] for S in range(len(rf))] def subset_exp(f: List[int]): """ Subset subset_exp of Σ[S⊆{0,1,...,n-1}] f(S) x^S """ assert f[0] == 0 n = 0 while 1 << n != len(f): n += 1 rf = add_rank([1]) for i in range(n): rg = add_rank(f[1 << i: 1 << (i + 1)]) ranked_zeta(rg) for S in range(1 << i): rf[S].append(0) rg[S].insert(0, 1) a = rf[S] b = rg[S] for k in reversed(range(i + 2)): v = 0 for x in range(k + 1): v += a[k - x] * b[x] b[k] = v rf.append(b) ranked_mobius(rf) return remove_rank(rf) def count_cycles(n: int, edges: List[Tuple[int, int]]): cycle = [0] * (1 << n) adj = [[] for _ in range(n)] for u, v in edges: adj[u].append(v) adj[v].append(u) cycle_dp = [[0] * n for _ in range(1 << n)] for v in range(n): cycle_dp[1 << v][v] = 1 for s in range(1, 1 << n): start = 0 while not ((s >> start) & 1): start += 1 for cur in range(n): if cycle_dp[s][cur] == 0: continue for nxt in adj[cur]: if start == nxt: cycle[s] += cycle_dp[s][cur] elif start < nxt and not ((s >> nxt) & 1): cycle_dp[s | (1 << nxt)][nxt] += cycle_dp[s][cur] for s in range(1, 1 << n): if popcount[s] == 1: cycle[s] = 1 elif popcount[s] == 2: cycle[s] = 0 else: cycle[s] //= 2 return cycle if __name__ == '__main__': n, m = map(int, input().split()) edges = [] for _ in range(m): u, v = map(int, input().split()) u -= 1 v -= 1 edges.append((u, v)) # E[S] = # of edges connecting vertices in S E = [0] * (1 << n) for u, v in edges: E[(1 << u) | (1 << v)] += 1 subset_zeta(E) cycle = count_cycles(n, edges) f = [0] * (1 << n) for C in range(1, 1 << n): if cycle[C] == 0: continue # max C t = C.bit_length() - 1 # {0, ..., tX} - C S = ((1 << (t + 1)) - 1) ^ C k = popcount[S] bit_deposit = [0] * (1 << k) bit_deposit[0] = S for A in range(1, 1 << k): bit_deposit[A] = (bit_deposit[A - 1] - 1) & S bit_deposit.reverse() g = [0] * (1 << k) for A in range(1 << k): g[A] = f[bit_deposit[A]] * (E[bit_deposit[A] | C] - E[bit_deposit[A]] - E[C]) for A, hA in enumerate(subset_exp(g)): f[bit_deposit[A] | C] += cycle[C] * hA print(subset_exp(f)[-1])