結果
| 問題 | No.2449 square_permutation |
| ユーザー |
|
| 提出日時 | 2023-09-01 18:44:56 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,499 bytes |
| コンパイル時間 | 2,371 ms |
| コンパイル使用メモリ | 81,896 KB |
| 実行使用メモリ | 107,516 KB |
| 最終ジャッジ日時 | 2025-01-03 06:54:48 |
| 合計ジャッジ時間 | 11,133 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 1 WA * 20 |
ソースコード
# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')
class SortedSet(Generic[T]):
BUCKET_RATIO = 50
REBUILD_RATIO = 170
def _build(self, a: Optional[List[T]] = None) -> None:
"Evenly divide `a` into buckets."
if a is None:
a = list(self)
size = len(a)
bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
self.a = [a[size * i // bucket_size: size *
(i + 1) // bucket_size] for i in range(bucket_size)]
def __init__(self, a: Iterable[T] = []) -> None:
"Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
a = list(a)
self.size = len(a)
if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
a = sorted(set(a))
self._build(a)
def __iter__(self) -> Iterator[T]:
for i in self.a:
for j in i:
yield j
def __reversed__(self) -> Iterator[T]:
for i in reversed(self.a):
for j in reversed(i):
yield j
def __eq__(self, other) -> bool:
return list(self) == list(other)
def __len__(self) -> int:
return self.size
def __repr__(self) -> str:
return "SortedSet" + str(self.a)
def __str__(self) -> str:
s = str(list(self))
return "{" + s[1: len(s) - 1] + "}"
def _position(self, x: T) -> Tuple[List[T], int]:
"Find the bucket and position which x should be inserted. self must not be empty."
for a in self.a:
if x <= a[-1]:
break
return (a, bisect_left(a, x))
def __contains__(self, x: T) -> bool:
if self.size == 0:
return False
a, i = self._position(x)
return i != len(a) and a[i] == x
def add(self, x: T) -> bool:
"Add an element and return True if added. / O(√N)"
if self.size == 0:
self.a = [[x]]
self.size = 1
return True
a, i = self._position(x)
if i != len(a) and a[i] == x:
return False
a.insert(i, x)
self.size += 1
if len(a) > len(self.a) * self.REBUILD_RATIO:
self._build()
return True
def _pop(self, a: List[T], i: int) -> T:
ans = a.pop(i)
self.size -= 1
if not a:
self._build()
return ans
def discard(self, x: T) -> bool:
"Remove an element and return True if removed. / O(√N)"
if self.size == 0:
return False
a, i = self._position(x)
if i == len(a) or a[i] != x:
return False
self._pop(a, i)
return True
def lt(self, x: T) -> Optional[T]:
"Find the largest element < x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] < x:
return a[bisect_left(a, x) - 1]
def le(self, x: T) -> Optional[T]:
"Find the largest element <= x, or None if it doesn't exist."
for a in reversed(self.a):
if a[0] <= x:
return a[bisect_right(a, x) - 1]
def gt(self, x: T) -> Optional[T]:
"Find the smallest element > x, or None if it doesn't exist."
for a in self.a:
if a[-1] > x:
return a[bisect_right(a, x)]
def ge(self, x: T) -> Optional[T]:
"Find the smallest element >= x, or None if it doesn't exist."
for a in self.a:
if a[-1] >= x:
return a[bisect_left(a, x)]
def __getitem__(self, i: int) -> T:
"Return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0:
return a[i]
else:
for a in self.a:
if i < len(a):
return a[i]
i -= len(a)
raise IndexError
def pop(self, i: int = -1) -> T:
"Pop and return the i-th element."
if i < 0:
for a in reversed(self.a):
i += len(a)
if i >= 0:
return self._pop(a, i)
else:
for a in self.a:
if i < len(a):
return self._pop(a, i)
i -= len(a)
raise IndexError
def index(self, x: T) -> int:
"Count the number of elements < x."
ans = 0
for a in self.a:
if a[-1] >= x:
return ans + bisect_left(a, x)
ans += len(a)
return ans
def index_right(self, x: T) -> int:
"Count the number of elements <= x."
ans = 0
for a in self.a:
if a[-1] > x:
return ans + bisect_right(a, x)
ans += len(a)
return ans
class eratosthenes:
def __init__(self, N: int) -> None:
'''
Nまでの素数を列挙
Parameters
----------
N:int
'''
self.N = N
self.isprime = [True]*(N+1)
self.minfactor = [-1]*(N+1)
self.isprime[1] = False
self.minfactor[1] = 1
self.mobius = [1]*(N+1)
self.primecnt = 0
# ふるう
for p in range(2, self.N+1):
if not self.isprime[p]:
continue
self.minfactor[p] = p
self.mobius[p] = -1
self.primecnt += 1
for q in range(2*p, N+1, p):
self.isprime[q] = False
if self.minfactor[q] == -1:
self.minfactor[q] = p
if (q//p) % p == 0:
self.mobius[q] = 0
else:
self.mobius[q] = -self.mobius[q]
def factorize(self, n: int) -> list:
'''
nの素因数分解
O(logn)
Parameters
----------
n:int
'''
res = []
while n > 1:
p = self.minfactor[n]
exp = 0
while self.minfactor[n] == p:
n //= p
exp += 1
res.append((p, exp))
return res
def divisors(self, n: int) -> list:
'''
nの約数列挙
O(sigma(n))~O(n^(1/3))
Parameters
----------
n:int
'''
res = [1]
factor = self.factorize(n)
for p, e in factor:
M = len(res)
for i in range(M):
v = 1
for _ in range(e):
v *= p
res.append(res[i]*v)
return res
N = int(input())
ER = eratosthenes(N+1)
ans = [i for i in range(N+1)]
changed = [False]*(N+1)
Multiset = SortedSet(ans)
Multiset.discard(0)
for i in range(N, 0, -1):
factor = ER.factorize(i)
j = 1
for p, e in factor:
if e % 2 == 0:
continue
j *= p
if j == 1:
if not Multiset:
continue
k = Multiset[0]
if k < i:
ans[k], ans[i] = i, k
changed[k] = True
changed[i] = True
Multiset.discard(k)
Multiset.discard(i)
else:
if changed[j]:
continue
ans[j], ans[i] = i, j
changed[j] = True
changed[i] = True
Multiset.discard(i)
Multiset.discard(j)
print(*ans[1:])