結果

問題 No.2449 square_permutation
ユーザー Nikkuniku029Nikkuniku029
提出日時 2023-09-01 18:44:56
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 7,499 bytes
コンパイル時間 1,839 ms
コンパイル使用メモリ 81,800 KB
実行使用メモリ 109,292 KB
最終ジャッジ日時 2024-06-11 02:38:17
合計ジャッジ時間 11,268 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 58 ms
68,928 KB
testcase_01 AC 61 ms
68,384 KB
testcase_02 AC 56 ms
68,464 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
testcase_21 WA -
testcase_22 AC 58 ms
67,976 KB
testcase_23 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

# https://github.com/tatyam-prime/SortedSet/blob/main/SortedSet.py
import math
from bisect import bisect_left, bisect_right
from typing import Generic, Iterable, Iterator, List, Tuple, TypeVar, Optional
T = TypeVar('T')


class SortedSet(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a: Optional[List[T]] = None) -> None:
        "Evenly divide `a` into buckets."
        if a is None:
            a = list(self)
        size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size: size *
                    (i + 1) // bucket_size] for i in range(bucket_size)]

    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedSet from iterable. / O(N) if sorted and unique / O(N log N)"
        a = list(a)
        self.size = len(a)
        if not all(a[i] < a[i + 1] for i in range(len(a) - 1)):
            a = sorted(set(a))
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i:
                yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i):
                yield j

    def __eq__(self, other) -> bool:
        return list(self) == list(other)

    def __len__(self) -> int:
        return self.size

    def __repr__(self) -> str:
        return "SortedSet" + str(self.a)

    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1: len(s) - 1] + "}"

    def _position(self, x: T) -> Tuple[List[T], int]:
        "Find the bucket and position which x should be inserted. self must not be empty."
        for a in self.a:
            if x <= a[-1]:
                break
        return (a, bisect_left(a, x))

    def __contains__(self, x: T) -> bool:
        if self.size == 0:
            return False
        a, i = self._position(x)
        return i != len(a) and a[i] == x

    def add(self, x: T) -> bool:
        "Add an element and return True if added. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return True
        a, i = self._position(x)
        if i != len(a) and a[i] == x:
            return False
        a.insert(i, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()
        return True

    def _pop(self, a: List[T], i: int) -> T:
        ans = a.pop(i)
        self.size -= 1
        if not a:
            self._build()
        return ans

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0:
            return False
        a, i = self._position(x)
        if i == len(a) or a[i] != x:
            return False
        self._pop(a, i)
        return True

    def lt(self, x: T) -> Optional[T]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Optional[T]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Optional[T]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Optional[T]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]

    def __getitem__(self, i: int) -> T:
        "Return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0:
                    return a[i]
        else:
            for a in self.a:
                if i < len(a):
                    return a[i]
                i -= len(a)
        raise IndexError

    def pop(self, i: int = -1) -> T:
        "Pop and return the i-th element."
        if i < 0:
            for a in reversed(self.a):
                i += len(a)
                if i >= 0:
                    return self._pop(a, i)
        else:
            for a in self.a:
                if i < len(a):
                    return self._pop(a, i)
                i -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans


class eratosthenes:
    def __init__(self, N: int) -> None:
        '''
        Nまでの素数を列挙
        Parameters
        ----------
        N:int
        '''
        self.N = N
        self.isprime = [True]*(N+1)
        self.minfactor = [-1]*(N+1)
        self.isprime[1] = False
        self.minfactor[1] = 1
        self.mobius = [1]*(N+1)
        self.primecnt = 0
        # ふるう
        for p in range(2, self.N+1):
            if not self.isprime[p]:
                continue
            self.minfactor[p] = p
            self.mobius[p] = -1
            self.primecnt += 1
            for q in range(2*p, N+1, p):
                self.isprime[q] = False
                if self.minfactor[q] == -1:
                    self.minfactor[q] = p
                if (q//p) % p == 0:
                    self.mobius[q] = 0
                else:
                    self.mobius[q] = -self.mobius[q]

    def factorize(self, n: int) -> list:
        '''
        nの素因数分解
        O(logn)
        Parameters
        ----------
        n:int
        '''
        res = []
        while n > 1:
            p = self.minfactor[n]
            exp = 0
            while self.minfactor[n] == p:
                n //= p
                exp += 1
            res.append((p, exp))
        return res

    def divisors(self, n: int) -> list:
        '''
        nの約数列挙
        O(sigma(n))~O(n^(1/3))
        Parameters
        ----------
        n:int
        '''
        res = [1]
        factor = self.factorize(n)
        for p, e in factor:
            M = len(res)
            for i in range(M):
                v = 1
                for _ in range(e):
                    v *= p
                    res.append(res[i]*v)
        return res


N = int(input())
ER = eratosthenes(N+1)
ans = [i for i in range(N+1)]
changed = [False]*(N+1)
Multiset = SortedSet(ans)
Multiset.discard(0)
for i in range(N, 0, -1):
    factor = ER.factorize(i)
    j = 1
    for p, e in factor:
        if e % 2 == 0:
            continue
        j *= p
    if j == 1:
        if not Multiset:
            continue
        k = Multiset[0]
        if k < i:
            ans[k], ans[i] = i, k
            changed[k] = True
            changed[i] = True
            Multiset.discard(k)
            Multiset.discard(i)
    else:
        if changed[j]:
            continue
        ans[j], ans[i] = i, j
        changed[j] = True
        changed[i] = True
        Multiset.discard(i)
        Multiset.discard(j)
print(*ans[1:])
0