結果
問題 | No.2454 Former < Latter |
ユーザー | tokusakurai |
提出日時 | 2023-09-01 22:06:17 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 89 ms / 2,000 ms |
コード長 | 20,075 bytes |
コンパイル時間 | 2,569 ms |
コンパイル使用メモリ | 221,752 KB |
実行使用メモリ | 17,500 KB |
最終ジャッジ日時 | 2024-06-11 03:55:31 |
合計ジャッジ時間 | 4,509 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 40 ms
15,312 KB |
testcase_03 | AC | 37 ms
15,184 KB |
testcase_04 | AC | 39 ms
15,424 KB |
testcase_05 | AC | 51 ms
15,864 KB |
testcase_06 | AC | 53 ms
15,512 KB |
testcase_07 | AC | 38 ms
15,196 KB |
testcase_08 | AC | 36 ms
5,376 KB |
testcase_09 | AC | 25 ms
6,880 KB |
testcase_10 | AC | 27 ms
7,268 KB |
testcase_11 | AC | 37 ms
15,188 KB |
testcase_12 | AC | 43 ms
15,196 KB |
testcase_13 | AC | 19 ms
15,304 KB |
testcase_14 | AC | 19 ms
15,196 KB |
testcase_15 | AC | 46 ms
10,552 KB |
testcase_16 | AC | 42 ms
10,248 KB |
testcase_17 | AC | 89 ms
5,376 KB |
testcase_18 | AC | 42 ms
5,376 KB |
testcase_19 | AC | 49 ms
17,500 KB |
testcase_20 | AC | 61 ms
16,408 KB |
testcase_21 | AC | 36 ms
5,376 KB |
testcase_22 | AC | 31 ms
6,184 KB |
testcase_23 | AC | 34 ms
7,176 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define per(i, n) for (int i = (n)-1; i >= 0; i--) #define rep2(i, l, r) for (int i = (l); i < (r); i++) #define per2(i, l, r) for (int i = (r)-1; i >= (l); i--) #define each(e, v) for (auto &e : v) #define MM << " " << #define pb push_back #define eb emplace_back #define all(x) begin(x), end(x) #define rall(x) rbegin(x), rend(x) #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> using minheap = priority_queue<T, vector<T>, greater<T>>; template <typename T> using maxheap = priority_queue<T>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } int pct(int x) { return __builtin_popcount(x); } int pct(ll x) { return __builtin_popcountll(x); } int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename T> void reorder(vector<T> &a, const vector<int> &ord) { int n = a.size(); vector<T> b(n); for (int i = 0; i < n; i++) b[i] = a[ord[i]]; swap(a, b); } template <typename T> T floor(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? x / y : (x - y + 1) / y); } template <typename T> T ceil(T x, T y) { assert(y != 0); if (y < 0) x = -x, y = -y; return (x >= 0 ? (x + y - 1) / y : x / y); } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); cerr << fixed << setprecision(15); } } io_setup; constexpr int inf = (1 << 30) - 1; constexpr ll INF = (1LL << 60) - 1; // constexpr int MOD = 1000000007; constexpr int MOD = 998244353; template <typename T = string> struct Suffix_Array { const T s; const int n; vector<int> SA, RANK; Suffix_Array(const T &s) : s(s), n(s.size()) { int n = s.size(); int mi = *min_element(begin(s), end(s)), ma = *max_element(begin(s), end(s)); vector<int> a(n); if (ma - mi >= n) { a = compress(s); } else { for (int i = 0; i < n; i++) a[i] = s[i] - mi; } SA = SAIS(a); RANK.resize(n); for (int i = 0; i < n; i++) RANK[SA[i]] = i; } vector<int> compress(const T &a) { int n = a.size(); T v = a; sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); vector<int> ret(n); for (int i = 0; i < n; i++) ret[i] = std::lower_bound(begin(v), end(v), a[i]) - begin(v); return ret; } vector<int> SAIS(const vector<int> &a) { int n = a.size(); vector<int> ls_type(n); // 0:s 型、1:l 型 ls_type[n - 1] = 1; for (int i = n - 2; i >= 0; i--) { ls_type[i] = ls_type[i + 1]; if (a[i] < a[i + 1]) ls_type[i] = 0; if (a[i] > a[i + 1]) ls_type[i] = 1; } vector<int> lms, lms_id(n, -1); for (int i = 1; i < n; i++) { if (ls_type[i - 1] == 1 && ls_type[i] == 0) { lms_id[i] = lms.size(); lms.push_back(i); } } int m = lms.size(); int ma = *max_element(begin(a), end(a)); vector<int> l(ma + 1, 0), r(ma + 1, 0); for (int i = 0; i < n; i++) r[a[i]]++; for (int i = 0; i < ma; i++) r[i + 1] += r[i]; for (int i = 0; i < ma; i++) l[i + 1] = r[i]; if (m == 0) { vector<int> sa(n); for (int i = n - 1; i >= 0 && ls_type[i] == 1; i--) { int e = a[i]; sa[l[e]++] = i; } for (int i = 0; i < n && ls_type[i] == 0; i++) { int e = a[i]; sa[l[e]++] = i; } return sa; } auto induced_sort = [&](vector<int> &sa) { auto ml = l, mr = r; sa[ml[a[n - 1]]++] = n - 1; for (int i = 0; i < n; i++) { int e = sa[i]; if (e > 0 && ls_type[e - 1] == 1) sa[ml[a[e - 1]]++] = e - 1; } for (int i = n - 1; i >= 0; i--) { int e = sa[i]; if (e > 0 && ls_type[e - 1] == 0) sa[--mr[a[e - 1]]] = e - 1; } }; vector<int> sa(n, -1); for (int i = m - 1; i >= 0; i--) { int e = lms[i]; sa[--r[a[e]]] = e; } for (auto &e : lms) r[a[e]]++; induced_sort(sa); vector<int> sa_lms; sa_lms.reserve(m); for (auto &e : sa) { if (lms_id[e] != -1) sa_lms.push_back(lms_id[e]); } // a[lms[i]:lms[i+1]] と a[lms[j]:lms[j+1]] の一致判定 auto same = [&](int i, int j) { if (i == m - 1 || j == m - 1) return false; if (lms[i + 1] - lms[i] != lms[j + 1] - lms[j]) return false; int d = lms[i + 1] - lms[i]; for (int k = 0; k <= d; k++) { if (a[lms[i] + k] != a[lms[j] + k]) return false; } return true; }; vector<int> rank_lms(m); rank_lms[sa_lms[0]] = 0; for (int i = 1; i < m; i++) { rank_lms[sa_lms[i]] = rank_lms[sa_lms[i - 1]]; if (!same(sa_lms[i - 1], sa_lms[i])) rank_lms[sa_lms[i]]++; } vector<int> b(m); for (int i = 0; i < m; i++) { int e = lms[i]; b[i] = rank_lms[lms_id[e]]; } sa_lms = SAIS(b); fill(begin(sa), end(sa), -1); for (auto &e : lms) r[a[e]]--; for (auto &e : sa_lms) sa[r[a[lms[e]]]++] = lms[e]; induced_sort(sa); return sa; } int operator[](int i) const { return SA[i]; } int rank(int i) const { return RANK[i]; } int size() const { return n; } bool compare_substr(const T &t, int si = 0, int ti = 0) const { int m = t.size(); while (si < n && ti < m) { if (s[si] != t[ti]) return s[si] < t[ti]; si++, ti++; } return si == n && ti < m; } // 辞書順で t 以降となるもので最初の接尾辞 int lower_bound(const T &t) const { int l = -1, r = n; while (r - l > 1) { int m = (l + r) / 2; (compare_substr(t, SA[m]) ? l : r) = m; } return r; } int upper_bound(T t) const { t.back()++; return lower_bound(t); } }; template <typename T = string> struct Longest_Common_Prefix_Array { vector<int> lcp; const Suffix_Array<T> sa; const int n; Longest_Common_Prefix_Array(const Suffix_Array<T> &sa) : sa(sa), n(sa.size()) { lcp.resize(n - 1); int h = 0; for (int i = 0; i < n; i++) { if (sa.rank(i) + 1 < n) { int j = sa[sa.rank(i) + 1]; while (max(i, j) + h < n && sa.s[i + h] == sa.s[j + h]) h++; lcp[sa.rank(i)] = h; if (h > 0) h--; } } } int operator[](int i) const { return lcp[i]; } }; template <typename Monoid> struct Segment_Tree { using M = typename Monoid::V; int n, m; vector<M> seg; // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a Segment_Tree(const vector<M> &v) : n(v.size()) { m = 1; while (m < n) m <<= 1; seg.assign(2 * m, Monoid::id); copy(begin(v), end(v), begin(seg) + m); build(); } Segment_Tree(int n, M x = Monoid::id) : Segment_Tree(vector<M>(n, x)) {} void set(int i, const M &x) { seg[m + i] = x; } void build() { for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]); } void update(int i, const M &x, bool apply = false) { seg[i + m] = apply ? Monoid::merge(seg[i + m], x) : x; i += m; while (i >>= 1) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]); } M query(int l, int r) const { l = max(l, 0), r = min(r, n); M L = Monoid::id, R = Monoid::id; l += m, r += m; while (l < r) { if (l & 1) L = Monoid::merge(L, seg[l++]); if (r & 1) R = Monoid::merge(seg[--r], R); l >>= 1, r >>= 1; } return Monoid::merge(L, R); } M operator[](int i) const { return seg[m + i]; } template <typename C> int find_subtree(int i, const C &check, M &x, int type) const { while (i < m) { M nxt = type ? Monoid::merge(seg[2 * i + type], x) : Monoid::merge(x, seg[2 * i + type]); if (check(nxt)) { i = 2 * i + type; } else { x = nxt; i = 2 * i + (type ^ 1); } } return i - m; } // check(区間 [l,r] での演算結果) を満たす最小の r (存在しなければ n) template <typename C> int find_first(int l, const C &check) const { M L = Monoid::id; int a = l + m, b = 2 * m; while (a < b) { if (a & 1) { M nxt = Monoid::merge(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, 0); L = nxt; a++; } a >>= 1, b >>= 1; } return n; } // check((区間 [l,r) での演算結果)) を満たす最大の l (存在しなければ -1) template <typename C> int find_last(int r, const C &check) const { M R = Monoid::id; int a = m, b = r + m; while (a < b) { if ((b & 1) || a == 1) { M nxt = Monoid::merge(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, 1); R = nxt; } a >>= 1, b >>= 1; } return -1; } }; // sum template <typename T> struct Plus_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a + b; }; static const V id; }; template <typename T> const T Plus_Monoid<T>::id = 0; // prod template <typename T> struct Product_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return a * b; }; static const V id; }; template <typename T> const T Product_Monoid<T>::id = 1; // min template <typename T> struct Min_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { return min(a, b); }; static const V id; }; template <typename T> constexpr T Min_Monoid<T>::id = numeric_limits<T>::max() / 2; // max template <typename T> struct Max_Monoid { using V = T; static constexpr V merge(V a, V b) { return max(a, b); }; static const V id; }; template <typename T> constexpr T Max_Monoid<T>::id = -(numeric_limits<T>::max() / 2); // 代入 template <typename T> struct Update_Monoid { using V = T; static constexpr V merge(const V &a, const V &b) { if (a == id) return b; if (b == id) return a; return b; } static const V id; }; template <typename T> constexpr T Update_Monoid<T>::id = numeric_limits<T>::max(); // min count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first < b.first) return a; if (a.first > b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max() / 2, 0); // max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Monoid { using V = pair<T, S>; static constexpr V merge(const V &a, const V &b) { if (a.first > b.first) return a; if (a.first < b.first) return b; return V(a.first, a.second + b.second); } static const V id; }; template <typename T, typename S> constexpr pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(-(numeric_limits<T>::max() / 2), 0); // 一次関数 ax+b の合成 (左から順に作用) template <typename T> struct Affine_Monoid { using V = pair<T, T>; static constexpr V merge(const V &a, const V &b) { return V(a.first * b.first, a.second * b.first + b.second); }; static const V id; }; template <typename T> const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0); // モノイドの直積 template <typename Monoid_1, typename Monoid_2> struct Cartesian_Product_Monoid { using V1 = typename Monoid_1::V; using V2 = typename Monoid_2::V; using V = pair<V1, V2>; static constexpr V merge(const V &a, const V &b) { return V(Monoid_1::merge(a.first, b.first), Monoid_2::merge(a.second, b.second)); } static const V id; }; template <typename Monoid_1, typename Monoid_2> const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id); // 行列積 (l*r) template <typename T, int n> struct Matrix_Monoid { using V = array<array<T, n>, n>; static constexpr V I() { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) ret[i][i] = 1; return ret; } static constexpr V merge(V l, V r) { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) ret[i][k] += l[i][j] * r[j][k]; } } return ret; } static const V id; }; template <typename T, int n> const array<array<T, n>, n> Matrix_Monoid<T, n>::id = Matrix_Monoid<T, n>::I(); // 行列積 (r*l) template <typename T, int n> struct Matrix_Monoid_Rev { using V = array<array<T, n>, n>; static constexpr V I() { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) ret[i][i] = 1; return ret; } static constexpr V merge(V l, V r) { V ret; for (int i = 0; i < n; i++) fill(begin(ret[i]), end(ret[i]), T(0)); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) ret[i][k] += r[i][j] * l[j][k]; } } return ret; } static const V id; }; template <typename T, int n> const array<array<T, n>, n> Matrix_Monoid_Rev<T, n>::id = Matrix_Monoid_Rev<T, n>::I(); // range add range min template <typename T> struct Min_Plus_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range max template <typename T> struct Max_Plus_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Plus_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return a + b; }; }; // range add range min count (T:最小値の型、S:個数の型) template <typename T, typename S> struct Min_Count_Add_Acted_Monoid { using Monoid = Min_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range max count (T:最大値の型、S:個数の型) template <typename T, typename S> struct Max_Count_Add_Acted_Monoid { using Monoid = Max_Count_Monoid<T, S>; using Operator = Plus_Monoid<T>; using M = pair<T, S>; using O = T; static constexpr M merge(const M &a, const O &b) { return make_pair(a.first + b, a.second); }; }; // range add range sum template <typename T> struct Plus_Plus_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Plus_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return M(a.first + b * a.second, a.second); } }; // range update range sum template <typename T> struct Plus_Update_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>; using Operator = Update_Monoid<T>; using M = pair<T, int>; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : M(b * a.second, a.second); } }; // range update range min template <typename T> struct Min_Update_Acted_Monoid { using Monoid = Min_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range update range max template <typename T> struct Max_Update_Acted_Monoid { using Monoid = Max_Monoid<T>; using Operator = Update_Monoid<T>; using M = T; using O = T; static constexpr M merge(const M &a, const O &b) { return b == Operator::id ? a : b; } }; // range affine range sum template <typename T> struct Plus_Affine_Acted_Monoid { using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>; using Operator = Affine_Monoid<T>; using M = pair<T, T>; using O = pair<T, T>; static constexpr M merge(const M &a, const O &b) { return M(b.first * a.first + b.second * a.second, a.second); }; }; void solve() { int N; string S; cin >> N >> S; Suffix_Array sa(S); Longest_Common_Prefix_Array lcp(sa); vector<int> v(N - 1); rep(i, N - 1) v[i] = lcp[i]; Segment_Tree<Min_Monoid<int>> seg(v); int ans = 0; rep2(i, 1, N) { int a = sa.rank(0), b = sa.rank(i); if (a < b) { ans++; continue; } int x = seg.query(b, a); if (i < N - i && i <= x) ans++; } cout << ans << '\n'; } int main() { int T = 1; cin >> T; while (T--) solve(); }