結果

問題 No.2453 Seat Allocation
ユーザー AerenAeren
提出日時 2023-09-01 22:28:16
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 99 ms / 2,000 ms
コード長 4,589 bytes
コンパイル時間 4,157 ms
コンパイル使用メモリ 365,320 KB
実行使用メモリ 10,240 KB
最終ジャッジ日時 2024-06-25 09:28:21
合計ジャッジ時間 6,312 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 87 ms
10,240 KB
testcase_06 AC 27 ms
5,376 KB
testcase_07 AC 38 ms
9,856 KB
testcase_08 AC 8 ms
5,376 KB
testcase_09 AC 99 ms
10,240 KB
testcase_10 AC 99 ms
10,240 KB
testcase_11 AC 97 ms
10,240 KB
testcase_12 AC 28 ms
5,376 KB
testcase_13 AC 32 ms
5,376 KB
testcase_14 AC 25 ms
5,376 KB
testcase_15 AC 40 ms
5,376 KB
testcase_16 AC 33 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 57 ms
6,400 KB
testcase_19 AC 79 ms
8,576 KB
testcase_20 AC 34 ms
5,688 KB
testcase_21 AC 34 ms
5,376 KB
testcase_22 AC 50 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#include <x86intrin.h>
using namespace std;
using namespace numbers;

template<class T>
struct field_of_fraction{
	static field_of_fraction limit_min(){
		return {-1, 0};
	}
	static field_of_fraction limit_max(){
		return {1, 0};
	}
	T n, d;
	field_of_fraction(T n = 0, T d = 1): n(n), d(d){
		if(d < 0) this->n = -n, this->d = -d;
	}
	field_of_fraction &reduce(){
		T g = gcd(n, d);
		n /= g, d /= g;
		return *this;
	}
	field_of_fraction reduced() const{
		return field_of_fraction(*this).reduce();
	}
	field_of_fraction &operator+=(const field_of_fraction &x){
		return *this = {n * x.d + x.n * d, d * x.d};
	}
	field_of_fraction &operator+=(const T &x){
		return *this = {n + d * x, d};
	}
	field_of_fraction &operator-=(const field_of_fraction &x){
		return *this = {n * x.d - x.n * d, d * x.d};
	}
	field_of_fraction &operator-=(const T &x){
		return *this = {n - d * x, d};
	}
	field_of_fraction &operator*=(const field_of_fraction &x){
		return *this = {n * x.n, d * x.d};
	}
	field_of_fraction &operator*=(const T &x){
		return *this = {n * x, d};
	}
	field_of_fraction &operator/=(const field_of_fraction &x){
		assert(x.n != T(0));
		return *this = {n * x.d, d * x.n};
	}
	field_of_fraction &operator/=(const T &x){
		assert(x != T(0));
		return *this = {n, d * x};
	}
	friend ostream &operator<<(ostream &out, const field_of_fraction &x){
		return out << x.n << "/" << x.d;
	}
	field_of_fraction operator+(const field_of_fraction &x) const{
		return field_of_fraction(*this) += x;
	}
	field_of_fraction operator+(const T &x) const{
		return field_of_fraction(*this) += x;
	}
	friend field_of_fraction operator+(const T &x, const field_of_fraction &f){
		return field_of_fraction(f) += x;
	}
	field_of_fraction operator+() const{
		return *this;
	}
	field_of_fraction operator-(const field_of_fraction &x) const{
		return field_of_fraction(*this) -= x;
	}
	field_of_fraction operator-(const T &x) const{
		return field_of_fraction(*this) -= x;
	}
	friend field_of_fraction operator-(const T &x, const field_of_fraction &f){
		return {x * f.d - f.n, f.d};
	}
	field_of_fraction operator-() const{
		return {-n, d};
	}
	field_of_fraction operator*(const field_of_fraction &x) const{
		return field_of_fraction(*this) *= x;
	}
	field_of_fraction operator*(const T &x) const{
		return field_of_fraction(*this) *= x;
	}
	friend field_of_fraction operator*(const T &x, const field_of_fraction &f){
		return field_of_fraction(f) *= x;
	}
	field_of_fraction operator/(const field_of_fraction &x) const{
		return field_of_fraction(*this) /= x;
	}
	field_of_fraction operator/(const T &x) const{
		return field_of_fraction(*this) /= x;
	}
	friend field_of_fraction operator/(const T &x, const field_of_fraction &f){
		return field_of_fraction(x * f.d, f.n);
	}
	field_of_fraction &operator++(){
		n += d;
		return *this;
	}
	field_of_fraction operator++(int){
		auto res = *this;
		n += d;
		return res;
	}
	field_of_fraction &operator--(){
		n -= d;
		return *this;
	}
	field_of_fraction operator--(int){
		auto res = *this;
		n -= d;
		return res;
	}
#define OP(c)\
bool operator c(const field_of_fraction &x) const{\
	return n * x.d c x.n * d;\
}
OP(==) OP(!=) OP(<) OP(<=) OP(>) OP(>=)
#undef OP
#define OP(c)\
bool operator c(const T &x) const{\
	return n c d * x;\
}
OP(==) OP(!=) OP(<) OP(<=) OP(>) OP(>=)
#undef OP
#define OP(c)\
friend bool operator c(const T &x, const field_of_fraction &f){\
	return f.d * x c f.n;\
}
OP(==) OP(!=) OP(<) OP(<=) OP(>) OP(>=)
#undef OP
};

using F = field_of_fraction<long long>;

int main(){
	cin.tie(0)->sync_with_stdio(0);
	cin.exceptions(ios::badbit | ios::failbit);
	int n, m;
	cin >> n >> m;
	vector<int> a(n), b(m);
	copy_n(istream_iterator<int>(cin), n, a.begin());
	copy_n(istream_iterator<int>(cin), m, b.begin());
	set<pair<F, array<int, 2>>, greater<>> s;
	for(auto i = 0; i < n; ++ i){
		s.insert({F{a[i], b[0]}, {-i, 0}});
	}
	for(auto rep = m; rep; -- rep){
		auto [f, info] = *s.begin();
		auto [i, j] = info;
		i = -i;
		s.erase(s.begin());
		cout << i + 1 << "\n";
		if(j + 1 < m){
			s.insert({F{a[i], b[j + 1]}, {-i, j + 1}});
		}
	}
	return 0;
}

/*

*/

////////////////////////////////////////////////////////////////////////////////////////
//                                                                                    //
//                                   Coded by Aeren                                   //
//                                                                                    //
////////////////////////////////////////////////////////////////////////////////////////
0