結果
問題 | No.2454 Former < Latter |
ユーザー |
![]() |
提出日時 | 2023-09-01 22:51:36 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 13,047 bytes |
コンパイル時間 | 3,875 ms |
コンパイル使用メモリ | 244,904 KB |
最終ジャッジ日時 | 2025-02-16 17:08:22 |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 14 WA * 9 |
ソースコード
#ifdef LOCAL//#define _GLIBCXX_DEBUG#else#pragma GCC optimize("O3")#pragma GCC optimize("unroll-loops")//#pragma GCC target("avx512f,avx512dq,avx512cd,avx512bw,avx512vl")#endif#include <bits/stdc++.h>using namespace std;#include <algorithm>#include <cassert>#include <numeric>#include <string>#include <vector>namespace atcoder {namespace internal {std::vector<int> sa_naive(const std::vector<int>& s) {int n = int(s.size());std::vector<int> sa(n);std::iota(sa.begin(), sa.end(), 0);std::sort(sa.begin(), sa.end(), [&](int l, int r) {if (l == r) return false;while (l < n && r < n) {if (s[l] != s[r]) return s[l] < s[r];l++;r++;}return l == n;});return sa;}std::vector<int> sa_doubling(const std::vector<int>& s) {int n = int(s.size());std::vector<int> sa(n), rnk = s, tmp(n);std::iota(sa.begin(), sa.end(), 0);for (int k = 1; k < n; k *= 2) {auto cmp = [&](int x, int y) {if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];int rx = x + k < n ? rnk[x + k] : -1;int ry = y + k < n ? rnk[y + k] : -1;return rx < ry;};std::sort(sa.begin(), sa.end(), cmp);tmp[sa[0]] = 0;for (int i = 1; i < n; i++) {tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);}std::swap(tmp, rnk);}return sa;}// SA-IS, linear-time suffix array construction// Reference:// G. Nong, S. Zhang, and W. H. Chan,// Two Efficient Algorithms for Linear Time Suffix Array Constructiontemplate <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>std::vector<int> sa_is(const std::vector<int>& s, int upper) {int n = int(s.size());if (n == 0) return {};if (n == 1) return {0};if (n == 2) {if (s[0] < s[1]) {return {0, 1};} else {return {1, 0};}}if (n < THRESHOLD_NAIVE) {return sa_naive(s);}if (n < THRESHOLD_DOUBLING) {return sa_doubling(s);}std::vector<int> sa(n);std::vector<bool> ls(n);for (int i = n - 2; i >= 0; i--) {ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);}std::vector<int> sum_l(upper + 1), sum_s(upper + 1);for (int i = 0; i < n; i++) {if (!ls[i]) {sum_s[s[i]]++;} else {sum_l[s[i] + 1]++;}}for (int i = 0; i <= upper; i++) {sum_s[i] += sum_l[i];if (i < upper) sum_l[i + 1] += sum_s[i];}auto induce = [&](const std::vector<int>& lms) {std::fill(sa.begin(), sa.end(), -1);std::vector<int> buf(upper + 1);std::copy(sum_s.begin(), sum_s.end(), buf.begin());for (auto d : lms) {if (d == n) continue;sa[buf[s[d]]++] = d;}std::copy(sum_l.begin(), sum_l.end(), buf.begin());sa[buf[s[n - 1]]++] = n - 1;for (int i = 0; i < n; i++) {int v = sa[i];if (v >= 1 && !ls[v - 1]) {sa[buf[s[v - 1]]++] = v - 1;}}std::copy(sum_l.begin(), sum_l.end(), buf.begin());for (int i = n - 1; i >= 0; i--) {int v = sa[i];if (v >= 1 && ls[v - 1]) {sa[--buf[s[v - 1] + 1]] = v - 1;}}};std::vector<int> lms_map(n + 1, -1);int m = 0;for (int i = 1; i < n; i++) {if (!ls[i - 1] && ls[i]) {lms_map[i] = m++;}}std::vector<int> lms;lms.reserve(m);for (int i = 1; i < n; i++) {if (!ls[i - 1] && ls[i]) {lms.push_back(i);}}induce(lms);if (m) {std::vector<int> sorted_lms;sorted_lms.reserve(m);for (int v : sa) {if (lms_map[v] != -1) sorted_lms.push_back(v);}std::vector<int> rec_s(m);int rec_upper = 0;rec_s[lms_map[sorted_lms[0]]] = 0;for (int i = 1; i < m; i++) {int l = sorted_lms[i - 1], r = sorted_lms[i];int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;bool same = true;if (end_l - l != end_r - r) {same = false;} else {while (l < end_l) {if (s[l] != s[r]) {break;}l++;r++;}if (l == n || s[l] != s[r]) same = false;}if (!same) rec_upper++;rec_s[lms_map[sorted_lms[i]]] = rec_upper;}auto rec_sa =sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);for (int i = 0; i < m; i++) {sorted_lms[i] = lms[rec_sa[i]];}induce(sorted_lms);}return sa;}} // namespace internalstd::vector<int> suffix_array(const std::vector<int>& s, int upper) {assert(0 <= upper);for (int d : s) {assert(0 <= d && d <= upper);}auto sa = internal::sa_is(s, upper);return sa;}template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {int n = int(s.size());std::vector<int> idx(n);iota(idx.begin(), idx.end(), 0);sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });std::vector<int> s2(n);int now = 0;for (int i = 0; i < n; i++) {if (i && s[idx[i - 1]] != s[idx[i]]) now++;s2[idx[i]] = now;}return internal::sa_is(s2, now);}std::vector<int> suffix_array(const std::string& s) {int n = int(s.size());std::vector<int> s2(n);for (int i = 0; i < n; i++) {s2[i] = s[i];}return internal::sa_is(s2, 255);}// Reference:// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its// Applicationstemplate <class T>std::vector<int> lcp_array(const std::vector<T>& s,const std::vector<int>& sa) {int n = int(s.size());assert(n >= 1);std::vector<int> rnk(n);for (int i = 0; i < n; i++) {rnk[sa[i]] = i;}std::vector<int> lcp(n - 1);int h = 0;for (int i = 0; i < n; i++) {if (h > 0) h--;if (rnk[i] == 0) continue;int j = sa[rnk[i] - 1];for (; j + h < n && i + h < n; h++) {if (s[j + h] != s[i + h]) break;}lcp[rnk[i] - 1] = h;}return lcp;}std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {int n = int(s.size());std::vector<int> s2(n);for (int i = 0; i < n; i++) {s2[i] = s[i];}return lcp_array(s2, sa);}// Reference:// D. Gusfield,// Algorithms on Strings, Trees, and Sequences: Computer Science and// Computational Biologytemplate <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {int n = int(s.size());if (n == 0) return {};std::vector<int> z(n);z[0] = 0;for (int i = 1, j = 0; i < n; i++) {int& k = z[i];k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);while (i + k < n && s[k] == s[i + k]) k++;if (j + z[j] < i + z[i]) j = i;}z[0] = n;return z;}std::vector<int> z_algorithm(const std::string& s) {int n = int(s.size());std::vector<int> s2(n);for (int i = 0; i < n; i++) {s2[i] = s[i];}return z_algorithm(s2);}} // namespace atcoderusing namespace atcoder;// AC-Library -> https://atcoder.github.io/ac-library/production/document_ja/typedef long long ll;typedef unsigned long long ull;typedef long double ld;typedef pair<ll, ll> P;typedef pair<int, int> Pi;typedef vector<ll> Vec;typedef vector<int> Vi;typedef vector<string> Vs;typedef vector<char> Vc;typedef vector<P> VP;typedef vector<VP> VVP;typedef vector<Vec> VV;typedef vector<Vi> VVi;typedef vector<Vc> VVc;typedef vector<VV> VVV;typedef vector<VVV> VVVV;#define MAKEVV(variable, a, ...) VV variable(a, Vec(__VA_ARGS__))#define MAKEVVc(variable, a, ...) VVc variable(a,Vc(__VA_ARGS__))#define MAKEVVV(variable, a, b, ...) VVV variable(a, VV(b, Vec(__VA_ARGS__)))#define MAKEVVVV(variable, a, b, c, ...) VVVV variable(a, VVV(b, (VV(c, Vec(__VA_ARGS__)))))#define endl '\n'#define REP(i, a, b) for(ll i=(a); i<(b); i++)#define PER(i, a, b) for(ll i=(a); i>=(b); i--)#define rep(i, n) REP(i, 0, n)#define per(i, n) PER(i, n, 0)const ll INF = 4'000'000'000'000'000'010LL;const ll MOD=998244353;#define Yes(n) cout << ((n) ? "Yes" : "No") << endl;#define YES(n) cout << ((n) ? "YES" : "NO") << endl;#define ALL(v) v.begin(), v.end()#define rALL(v) v.rbegin(), v.rend()#define pb(x) push_back(x)#define mp(a, b) make_pair(a,b)#define Each(a,b) for(auto &a :b)#define rEach(i, mp) for (auto i = mp.rbegin(); i != mp.rend(); ++i)#define SUM(a) accumulate(ALL(a),0LL)#define outminusone(a) cout<< ( a==INF ? -1 : a ) <<endl#define Uniq(v) v.erase(unique(v.begin(), v.end()), v.end())#define fi first#define se secondtemplate<class T, class S>bool chmax(T &a, const S &b) { if (a<b) { a=b; return true; } return false; }template<class T, class S>bool chmin(T &a, const S &b) { if (b<a) { a=b; return true; } return false; }template<class T>auto lb(vector<T> &X, T x){return lower_bound(ALL(X),x) - X.begin();}template<class T>auto ub(vector<T> &X, T x){return upper_bound(ALL(X),x) - X.begin();}ll popcnt(ll x){return __builtin_popcount(x);}ll topbit(ll t){return t==0?-1:63-__builtin_clzll(t);}ll floor(ll y,ll x){assert(x != 0);if(x < 0){y *= -1; x *= -1;}if(y < 0){return (y-x+1)/x;}return y/x;};ll ceil(ll y, ll x){assert(x != 0);if(x < 0){y *= -1; x *= -1;}if(y < 0){return y/x;}return (y+x-1)/x;};template<typename T1, typename T2>istream &operator>>(istream &i, pair<T1, T2> &p) { return i>>p.first>>p.second; }template<typename T>istream& operator>>(istream&i,vector<T>&v){rep(j,v.size())i>>v[j];return i;}template<typename T1, typename T2>ostream &operator<<(ostream &s, const pair<T1, T2> &p) { return s<<"("<<p.first<<", "<<p.second<<")"; }template<class T>ostream &operator<<(ostream &os, const vector<T> &v) {bool f = false;for(const auto &d: v) {if(f) os<<" ";f = true;os<<d;}return os;}template <class T> ostream& operator<<(ostream& os, const set<T>& s) {os << "{";bool f = false;for (auto d : s) {if (f) os << ", ";f = true;os << d;}return os << "}";}template <class T> ostream& operator<<(ostream& os, const multiset<T>& s) {os << "{";bool f = false;for (auto d : s) {if (f) os << ", ";f = true;os<< d;}return os << "}";}template<class T, class U>ostream &operator<<(ostream &os, const map<T, U> &s) {bool f = false;os<<endl;for(auto p: s) {if(f) os<<endl;f = true;os<<p.first<<": "<<p.second;}return os<<endl;}void out() { cout << endl; }template <class Head, class... Tail> void out(const Head &head, const Tail &...tail) {cout << head;if(sizeof...(tail)) cout << ' ';out(tail...);}#ifdef LOCALtemplate<typename T>ostream &operator<<(ostream &s, const vector<vector<T>> &vv) {int len=vv.size();for(int i=0; i<len; ++i) {if(i==0)s<<endl;s<<i<<":"<<vv[i];if(i!=len-1)s<<endl;}return s;}struct PrettyOS {ostream& os;bool first;template <class T> auto operator<<(T&& x) {if (!first) os << ", ";first = false;os << x;return *this;}};template <class... T> void dbg0(T&&... t) {(PrettyOS{cerr, true} << ... << t);}#define dbg(...)do {cerr << #__VA_ARGS__ << ": ";dbg0(__VA_ARGS__);cerr << endl;} while (false);#else#define dbg(...)#endiftemplate <typename F>ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {if (check_ok) assert(check(ok));while (abs(ok - ng) > 1) {auto x = (ng + ok) / 2;tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));}return ok;}int solve(){ll n;string s;cin>>n>>s;auto sa = suffix_array(s);//dbg(sa);// string t;// t += s[0];// string tr = {s[0], s[1]};// tr[1] += 1;//dbg(t,tr);// t <= former < tr// tr <= lat_iなら form < latが確定// lat_i < tならlat > formが確定Vec v;rep(i,n){if(sa[i] != 0){v.pb(sa[i]);}}n--;dbg(v);auto nibutan = [&](ll ok, ll ng, auto f)->ll {while (abs(ok-ng) > 1) {ll mid = (ok+ng)/2;tie(ok, ng) = (f(mid) ? mp(mid, ng) : mp(ok, mid));}return ok;};auto judge = [&](ll mid)->bool{dbg(mid,s.substr(0,v[mid]),s.substr(v[mid]))return s.substr(0,v[mid]) < s.substr(v[mid]);};ll L = nibutan(n,-1,judge);out(n - L);return 0;}int main() {cin.tie(nullptr);ios::sync_with_stdio(false);cout<<std::setprecision(20);ll T;cin>>T;while(T--)solve();}