結果

問題 No.2457 Stampaholic (Easy)
ユーザー kaikeykaikey
提出日時 2023-09-01 23:07:13
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,076 bytes
コンパイル時間 2,478 ms
コンパイル使用メモリ 197,948 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2025-01-03 11:14:25
合計ジャッジ時間 4,305 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 WA -
testcase_02 AC 17 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 146 ms
5,248 KB
testcase_06 AC 10 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 21 ms
5,248 KB
testcase_09 AC 11 ms
5,248 KB
testcase_10 AC 25 ms
5,248 KB
testcase_11 AC 35 ms
5,248 KB
testcase_12 AC 54 ms
5,248 KB
testcase_13 AC 79 ms
5,248 KB
testcase_14 AC 117 ms
5,248 KB
testcase_15 AC 147 ms
5,248 KB
testcase_16 AC 141 ms
5,248 KB
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 6 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(30); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
    for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
    return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
    for (T& in : v) is >> in;
    return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
    F f;
    rec(F&& f_) : f(std::forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&... args) const {
        return f(*this, std::forward<Args>(args)...);
    }
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a > limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 1e18;
lint dx[8] = { 0, 1, 0, -1, 1, -1, 1, -1 }, dy[8] = { 1, 0, -1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
    lint from, to;
    lint cost;
    Edge() {

    }
    Edge(lint u, lint v, lint c) {
        cost = c;
        from = u;
        to = v;
    }
    bool operator<(const Edge& e) const {
        return cost < e.cost;
    }
};
struct WeightedEdge {
    lint to;
    lint cost;
    WeightedEdge(lint v, lint c) {
        to = v;
        cost = c;
    }
    bool operator<(const WeightedEdge& e) const {
        return cost < e.cost;
    }
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<plint, lint> tlint;
typedef pair<ld, ld> pld;
typedef pair<plint, plint> qlint;
typedef pair<Edge, lint> pEd;
typedef pair<lint, Vl> vVl;
typedef pair<set<lint>, set<lint>> pset;


template <std::int_fast64_t Modulus>
class modint
{
	using u64 = std::int_fast64_t;

public:
	u64 a;
	constexpr modint(const u64 x = 0) noexcept : a(x% Modulus) {}
	constexpr u64& value() noexcept { return a; }
	constexpr const u64& value() const noexcept { return a; }
	constexpr modint operator+(const modint rhs) const noexcept
	{
		return modint(*this) += rhs;
	}
	constexpr modint operator-(const modint rhs) const noexcept
	{
		return modint(*this) -= rhs;
	}
	constexpr modint operator*(const modint rhs) const noexcept
	{
		return modint(*this) *= rhs;
	}
	constexpr modint operator/(const modint rhs) const noexcept
	{
		return modint(*this) /= rhs;
	}
	constexpr modint& operator+=(const modint rhs) noexcept
	{
		a += rhs.a;
		if (a >= Modulus)
		{
			a -= Modulus;
		}
		return *this;
	}
	constexpr modint& operator-=(const modint rhs) noexcept
	{
		if (a < rhs.a)
		{
			a += Modulus;
		}
		a -= rhs.a;
		return *this;
	}
	constexpr modint& operator*=(const modint rhs) noexcept
	{
		a = a * rhs.a % Modulus;
		return *this;
	}
	constexpr modint& operator/=(modint rhs) noexcept
	{
		u64 exp = Modulus - 2;
		while (exp)
		{
			if (exp % 2)
			{
				*this *= rhs;
			}
			rhs *= rhs;
			exp /= 2;
		}
		return *this;
	}
};
typedef modint<MOD998244353> ModInt;

ModInt mod_pow(ModInt x, lint n) {
	ModInt ret = 1;
	while (n > 0) {
		if (n & 1) (ret *= x);
		(x *= x);
		n >>= 1;
	}
	return ret;
}

ModInt func[200000];
void funcinit(int N)
{
	func[0] = 1;
	for (int i = 1; i <= N; i++)
	{
		func[i] = func[i - 1] * i;
	}
}
ModInt comb(ModInt n, ModInt r)
{
	if (n.a <= 0 || n.a < r.a)
	{
		return 1;
	}
	return func[n.a] / (func[r.a] * func[(n - r).a]);
}

int main() {
	lint H, W, N, K;
	cin >> H >> W >> N >> K;
	ModInt all = H - K + 1;
	all *= W - K + 1;
	ModInt div = (ModInt)1 / all;

	ModInt ans = 0;
	FOR(i, 1, K) {
		FOR(j, 1, K) {
			if (H - i < i) break;
			if (W - j < j) break;
			lint cnt = i * j;
			ans += ((ModInt)1 - mod_pow(div * (all - cnt), N)) * 4;
		}
	}
	FOR(i, 1, K) {
		if (H - i < i) break;
		lint cnt = i * K;
		ans += ((ModInt)1 - mod_pow(div * (all - cnt), N)) * 2 * max(0ll, W - 2 * (K - 1));
	}
	FOR(i, 1, K) {
		if (W - i < i) break;
		lint cnt = i * K;
		ans += ((ModInt)1 - mod_pow(div * (all - cnt), N)) * 2 * max(0ll, H - 2 * (K - 1));
	}
	{
		lint cnt = K * K;
		ans += ((ModInt)1 - mod_pow(div * (all - cnt), N)) * max(0ll, H - 2 * (K - 1)) * max(0ll, W - 2 * (K - 1));
	}

	cout << ans.a << endk;
}
0