結果
| 問題 |
No.2454 Former < Latter
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-09-02 00:58:59 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 63 ms / 2,000 ms |
| コード長 | 13,404 bytes |
| コンパイル時間 | 22,272 ms |
| コンパイル使用メモリ | 398,684 KB |
| 実行使用メモリ | 6,064 KB |
| 最終ジャッジ日時 | 2024-06-11 07:33:30 |
| 合計ジャッジ時間 | 16,057 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 23 |
ソースコード
//https://github.com/rust-lang-ja/ac-library-rs
pub mod string {
#![allow(clippy::many_single_char_names)]
fn sa_naive<T: Ord>(s: &[T]) -> Vec<usize> {
let n = s.len();
let mut sa: Vec<usize> = (0..n).collect();
sa.sort_by(|&(mut l), &(mut r)| {
if l == r {
return std::cmp::Ordering::Equal;
}
while l < n && r < n {
if s[l] != s[r] {
return s[l].cmp(&s[r]);
}
l += 1;
r += 1;
}
if l == n {
std::cmp::Ordering::Less
} else {
std::cmp::Ordering::Greater
}
});
sa
}
fn sa_doubling(s: &[i32]) -> Vec<usize> {
let n = s.len();
let mut sa: Vec<usize> = (0..n).collect();
let mut rnk: Vec<i32> = s.to_vec();
let mut tmp = vec![0; n];
let mut k = 1;
while k < n {
let cmp = |&x: &usize, &y: &usize| {
if rnk[x] != rnk[y] {
return rnk[x].cmp(&rnk[y]);
}
let rx = if x + k < n { rnk[x + k] } else { -1 };
let ry = if y + k < n { rnk[y + k] } else { -1 };
rx.cmp(&ry)
};
sa.sort_by(cmp);
tmp[sa[0]] = 0;
for i in 1..n {
tmp[sa[i]] =
tmp[sa[i - 1]] + i32::from(cmp(&sa[i - 1], &sa[i]) == std::cmp::Ordering::Less);
}
std::mem::swap(&mut tmp, &mut rnk);
k *= 2;
}
sa
}
trait Threshold {
fn threshold_naive() -> usize;
fn threshold_doubling() -> usize;
}
enum DefaultThreshold {}
impl Threshold for DefaultThreshold {
fn threshold_naive() -> usize {
10
}
fn threshold_doubling() -> usize {
40
}
}
#[allow(clippy::cognitive_complexity)]
fn sa_is<T: Threshold>(s: &[usize], upper: usize) -> Vec<usize> {
let n = s.len();
match n {
0 => return vec![],
1 => return vec![0],
2 => return if s[0] < s[1] { vec![0, 1] } else { vec![1, 0] },
_ => (),
}
if n < T::threshold_naive() {
return sa_naive(s);
}
if n < T::threshold_doubling() {
let s: Vec<i32> = s.iter().map(|&x| x as i32).collect();
return sa_doubling(&s);
}
let mut sa = vec![0; n];
let mut ls = vec![false; n];
for i in (0..n - 1).rev() {
ls[i] = if s[i] == s[i + 1] {
ls[i + 1]
} else {
s[i] < s[i + 1]
};
}
let mut sum_l = vec![0; upper + 1];
let mut sum_s = vec![0; upper + 1];
for i in 0..n {
if !ls[i] {
sum_s[s[i]] += 1;
} else {
sum_l[s[i] + 1] += 1;
}
}
for i in 0..=upper {
sum_s[i] += sum_l[i];
if i < upper {
sum_l[i + 1] += sum_s[i];
}
}
// sa's origin is 1.
let induce = |sa: &mut [usize], lms: &[usize]| {
for elem in sa.iter_mut() {
*elem = 0;
}
let mut buf = sum_s.clone();
for &d in lms {
if d == n {
continue;
}
let old = buf[s[d]];
buf[s[d]] += 1;
sa[old] = d + 1;
}
buf.copy_from_slice(&sum_l);
let old = buf[s[n - 1]];
buf[s[n - 1]] += 1;
sa[old] = n;
for i in 0..n {
let v = sa[i];
if v >= 2 && !ls[v - 2] {
let old = buf[s[v - 2]];
buf[s[v - 2]] += 1;
sa[old] = v - 1;
}
}
buf.copy_from_slice(&sum_l);
for i in (0..n).rev() {
let v = sa[i];
if v >= 2 && ls[v - 2] {
buf[s[v - 2] + 1] -= 1;
sa[buf[s[v - 2] + 1]] = v - 1;
}
}
};
// origin: 1
let mut lms_map = vec![0; n + 1];
let mut m = 0;
for i in 1..n {
if !ls[i - 1] && ls[i] {
lms_map[i] = m + 1;
m += 1;
}
}
let mut lms = Vec::with_capacity(m);
for i in 1..n {
if !ls[i - 1] && ls[i] {
lms.push(i);
}
}
assert_eq!(lms.len(), m);
induce(&mut sa, &lms);
if m > 0 {
let mut sorted_lms = Vec::with_capacity(m);
for &v in &sa {
if lms_map[v - 1] != 0 {
sorted_lms.push(v - 1);
}
}
let mut rec_s = vec![0; m];
let mut rec_upper = 0;
rec_s[lms_map[sorted_lms[0]] - 1] = 0;
for i in 1..m {
let mut l = sorted_lms[i - 1];
let mut r = sorted_lms[i];
let end_l = if lms_map[l] < m { lms[lms_map[l]] } else { n };
let end_r = if lms_map[r] < m { lms[lms_map[r]] } else { n };
let same = if end_l - l != end_r - r {
false
} else {
while l < end_l {
if s[l] != s[r] {
break;
}
l += 1;
r += 1;
}
l != n && s[l] == s[r]
};
if !same {
rec_upper += 1;
}
rec_s[lms_map[sorted_lms[i]] - 1] = rec_upper;
}
let rec_sa = sa_is::<T>(&rec_s, rec_upper);
for i in 0..m {
sorted_lms[i] = lms[rec_sa[i]];
}
induce(&mut sa, &mut sorted_lms);
}
for elem in sa.iter_mut() {
*elem -= 1;
}
sa
}
fn sa_is_i32<T: Threshold>(s: &[i32], upper: i32) -> Vec<usize> {
let s: Vec<usize> = s.iter().map(|&x| x as usize).collect();
sa_is::<T>(&s, upper as usize)
}
pub fn suffix_array_manual(s: &[i32], upper: i32) -> Vec<usize> {
assert!(upper >= 0);
for &elem in s {
assert!(0 <= elem && elem <= upper);
}
sa_is_i32::<DefaultThreshold>(s, upper)
}
pub fn suffix_array_arbitrary<T: Ord>(s: &[T]) -> Vec<usize> {
let n = s.len();
let mut idx: Vec<usize> = (0..n).collect();
idx.sort_by_key(|&i| &s[i]);
let mut s2 = vec![0; n];
let mut now = 0;
for i in 0..n {
if i > 0 && s[idx[i - 1]] != s[idx[i]] {
now += 1;
}
s2[idx[i]] = now;
}
sa_is_i32::<DefaultThreshold>(&s2, now)
}
pub fn suffix_array(s: &str) -> Vec<usize> {
let s2: Vec<usize> = s.bytes().map(|x| x as usize).collect();
sa_is::<DefaultThreshold>(&s2, 255)
}
// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
pub fn lcp_array_arbitrary<T: Ord>(s: &[T], sa: &[usize]) -> Vec<usize> {
let n = s.len();
assert!(n >= 1);
let mut rnk = vec![0; n];
for i in 0..n {
rnk[sa[i]] = i;
}
let mut lcp = vec![0; n - 1];
let mut h: usize = 0;
for i in 0..n - 1 {
h = h.saturating_sub(1);
if rnk[i] == 0 {
continue;
}
let j = sa[rnk[i] - 1];
while j + h < n && i + h < n {
if s[j + h] != s[i + h] {
break;
}
h += 1;
}
lcp[rnk[i] - 1] = h;
}
lcp
}
pub fn lcp_array(s: &str, sa: &[usize]) -> Vec<usize> {
let s: &[u8] = s.as_bytes();
lcp_array_arbitrary(s, sa)
}
// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
pub fn z_algorithm_arbitrary<T: Ord>(s: &[T]) -> Vec<usize> {
let n = s.len();
if n == 0 {
return vec![];
}
let mut z = vec![0; n];
z[0] = 0;
let mut j = 0;
for i in 1..n {
let mut k = if j + z[j] <= i {
0
} else {
std::cmp::min(j + z[j] - i, z[i - j])
};
while i + k < n && s[k] == s[i + k] {
k += 1;
}
z[i] = k;
if j + z[j] < i + z[i] {
j = i;
}
}
z[0] = n;
z
}
pub fn z_algorithm(s: &str) -> Vec<usize> {
let s: &[u8] = s.as_bytes();
z_algorithm_arbitrary(s)
}
#[cfg(test)]
mod tests {
use super::*;
enum ZeroThreshold {}
impl Threshold for ZeroThreshold {
fn threshold_naive() -> usize {
0
}
fn threshold_doubling() -> usize {
0
}
}
fn verify_all(str: &str, expected_array: &[usize]) {
let array: Vec<i32> = str.bytes().map(|x| x as i32).collect();
let sa = sa_doubling(&array);
assert_eq!(sa, expected_array);
let sa_naive = sa_naive(&array);
assert_eq!(sa_naive, expected_array);
let sa_is = sa_is_i32::<ZeroThreshold>(&array, 255);
assert_eq!(sa_is, expected_array);
let sa_str = suffix_array(str);
assert_eq!(sa_str, expected_array);
}
#[test]
fn test_sa_0() {
let array = vec![0, 1, 2, 3, 4];
let sa = sa_doubling(&array);
assert_eq!(sa, vec![0, 1, 2, 3, 4]);
}
#[test]
fn test_sa_1() {
let str = "abracadabra";
verify_all(str, &[10, 7, 0, 3, 5, 8, 1, 4, 6, 9, 2]);
}
#[test]
fn test_sa_2() {
let str = "mmiissiissiippii"; // an example taken from https://mametter.hatenablog.com/entry/20180130/p1
verify_all(str, &[15, 14, 10, 6, 2, 11, 7, 3, 1, 0, 13, 12, 9, 5, 8, 4]);
}
#[test]
fn test_lcp_0() {
let str = "abracadabra";
let sa = suffix_array(str);
let lcp = lcp_array(str, &sa);
assert_eq!(lcp, &[1, 4, 1, 1, 0, 3, 0, 0, 0, 2]);
}
#[test]
fn test_lcp_1() {
let str = "mmiissiissiippii"; // an example taken from https://mametter.hatenablog.com/entry/20180130/p1
let sa = suffix_array(str);
let lcp = lcp_array(str, &sa);
assert_eq!(lcp, &[1, 2, 2, 6, 1, 1, 5, 0, 1, 0, 1, 0, 3, 1, 4]);
}
#[test]
fn test_z_0() {
let str = "abracadabra";
let lcp = z_algorithm(str);
assert_eq!(lcp, &[11, 0, 0, 1, 0, 1, 0, 4, 0, 0, 1]);
}
#[test]
fn test_z_1() {
let str = "ababababa";
let lcp = z_algorithm(str);
assert_eq!(lcp, &[9, 0, 7, 0, 5, 0, 3, 0, 1]);
}
}
}
use string::*;
pub mod scanner {
pub struct Scanner {
buf: Vec<String>,
}
impl Scanner {
pub fn new() -> Self {
Self { buf: vec![] }
}
pub fn new_from(source: &str) -> Self {
let source = String::from(source);
let buf = Self::split(source);
Self { buf }
}
pub fn next<T: std::str::FromStr>(&mut self) -> T {
loop {
if let Some(x) = self.buf.pop() {
return x.parse().ok().expect("");
}
let mut source = String::new();
std::io::stdin().read_line(&mut source).expect("");
self.buf = Self::split(source);
}
}
fn split(source: String) -> Vec<String> {
source
.split_whitespace()
.rev()
.map(String::from)
.collect::<Vec<_>>()
}
}
}
use crate::scanner::Scanner;
use crate::z_algorithm;
use std::io::Write;
fn main() {
let mut scanner = Scanner::new();
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
let t: usize = scanner.next();
for _ in 0..t {
solve(&mut scanner, &mut out);
}
}
fn solve(scanner: &mut Scanner, out: &mut std::io::BufWriter<std::io::StdoutLock>) {
let n: usize = scanner.next();
let s: String = scanner.next();
let res = z_algorithm(&s);
let s: Vec<char> = s.chars().collect();
let mut ans = 0;
for i in 1..n {
if i < res[i] {
ans += 1;
} else if i == res[i] {
if i + res[i] < n {
ans += 1;
}
} else if i + res[i] < n {
if s[res[i]] < s[i + res[i]] {
ans += 1;
}
}
}
writeln!(out, "{}", ans).unwrap();
}