結果

問題 No.2458 Line Up Charged Balls
ユーザー ecotteaecottea
提出日時 2023-09-02 20:50:47
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 134 ms / 2,000 ms
コード長 10,943 bytes
コンパイル時間 4,742 ms
コンパイル使用メモリ 270,912 KB
実行使用メモリ 8,064 KB
最終ジャッジ日時 2024-06-12 03:10:41
合計ジャッジ時間 7,962 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 58 ms
7,936 KB
testcase_06 AC 59 ms
7,936 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 117 ms
7,296 KB
testcase_10 AC 33 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 2 ms
5,376 KB
testcase_13 AC 66 ms
5,632 KB
testcase_14 AC 63 ms
5,504 KB
testcase_15 AC 24 ms
5,376 KB
testcase_16 AC 97 ms
7,936 KB
testcase_17 AC 109 ms
7,908 KB
testcase_18 AC 109 ms
7,936 KB
testcase_19 AC 127 ms
7,936 KB
testcase_20 AC 119 ms
8,064 KB
testcase_21 AC 99 ms
7,936 KB
testcase_22 AC 101 ms
7,936 KB
testcase_23 AC 133 ms
8,064 KB
testcase_24 AC 116 ms
7,936 KB
testcase_25 AC 134 ms
7,936 KB
testcase_26 AC 115 ms
7,908 KB
testcase_27 AC 133 ms
7,936 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(mod);
//using mint = static_modint<924844033>;

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【Convex-Hull Trick(整数)】
/*
* Convex_hull_trick<T>(bool min_flag = true) : O(1)
*	空で初期化する.min_flag = true[false] なら最小値[最大値] クエリに対応する.
*	制約:T は整数型
*
* insert(T a, T b) : ならし O(log n)
*	直線 y = a x + b を追加する.
*
* T get(T x) : O(log n)
*	a x + b の最小値[最大値] を返す.
*	制約:直線集合は空でない
*/
template <class T = ll>
class Convex_hull_trick_integer {
	// 参考 : https://noshi91.hatenablog.com/entry/2021/03/23/200810

	// 1 本の直線を表す構造体
	struct Line {
		// 直線の式が y = a x + b であることを表す.
		T a, b;

		// 直線であるか(さもなくば最小値クエリ)
		bool is_line;

		// 次の直線へのポインタを返す関数 (クエリとの比較で)
		mutable function<const Line* ()> getSuc;

		Line(T a_, T b_, bool is_line = true) : a(a_), b(b_), is_line(is_line) {}

		bool operator<(const Line& rhs) const {
			// set は lower_bound のように任意の比較関数を引数にとることはできないので,
			// 比較演算子内で取得クエリか否かで場合分けすることにより無理やり二分探索を実現する.
			//(set を使わず自前で平衡二分探索木を書くなら,左右の子を参照して下っていくだけでいい)

			// 直線と最小値クエリの比較
			if (!rhs.is_line) {
				const Line* suc = getSuc();
				if (suc == nullptr) return false;

				const T& x = rhs.a;
				return (suc->a - a) * x + (suc->b - b) < T(0);
			}

			// 最小値クエリと直線の比較
			if (!is_line) {
				const Line* suc = rhs.getSuc();
				if (suc == nullptr) return true;

				const T& x = a;
				return (suc->a - rhs.a) * x + (suc->b - rhs.b) > T(0);
			}

			// 直線と直線の比較
			return a > rhs.a;
		}

#ifdef _MSC_VER
		friend ostream& operator<<(ostream& os, const Line& l) {
			os << "y=";

			if (l.a == T(1)) os << "x";
			else if (l.a == T(0));
			else if (l.a == T(-1)) os << "-x";
			else os << l.a << "x";

			if (l.a == T(0) || l.b < T(0)) os << l.b;
			else if (l.b > T(0)) os << "+" << l.b;

			return os;
		}
#endif
	};

	set<Line> lines; // 直線を傾き狭義降順に記録した集合

	// 最小値クエリに対応する場合は true,最大値クエリに対応する場合は false
	bool min_flag;

public:
	// 空で初期化する.
	Convex_hull_trick_integer(bool min_flag = true) : min_flag(min_flag) {}

	// 直線 l : y = a x + b を追加する.
	void insert(T a, T b) {
		// 最大値クエリに対応する場合は -1 倍して上下反転し,最小値クエリとして扱う.
		if (!min_flag) {
			a = -a;
			b = -b;
		}

		// nit : l の次に傾きが小さい直線(無いなら lines.end())
		auto nit = lines.lower_bound({ a, b });

		// pit : l の次に傾きが大きい直線(無いなら lines.end())
		auto pit = (nit != lines.begin() ? prev(nit) : lines.end());

		// pit と l の傾きが等しい場合
		if (pit != lines.end() && pit->a == a) {
			// pit の方が低い位置にあるなら l は不要
			if (pit->b <= b) return;

			// l の方が低い位置にあるなら pit は不要
			lines.erase(pit);
		}
		// l と nit の傾きが等しい場合
		else if (nit != lines.end() && a == nit->a) {
			// nit の方が低い位置にあるなら l は不要
			if (nit->b <= b) return;

			// l の方が低い位置にあるなら nit は不要
			lines.erase(nit);
		}
		// pit, l, nit の傾きが全て異なる場合
		else if (pit != lines.end() && nit != lines.end()) {
			// l が不要な直線なら追加せず終わる.
			if ((b - pit->b) / (pit->a - a) >= (nit->b - b) / (a - nit->a)) return;
		}

		// 直線 l を追加する.
		auto it = lines.insert({ a, b }).first;
		it->getSuc = [=] { return (next(it) == lines.end() ? nullptr : &*next(it)); };

		// l より傾きが大きい直線のうち,l のせいで不必要になったものを削除する.
		if (it != lines.begin()) {
			auto pit = prev(it);
			while (pit != lines.begin()) {
				// pit : l の次に傾きが大きい直線
				// ppit : l の次の次に傾きが大きい直線
				auto ppit = prev(pit);

				// pit が必要な直線なら削除せず終わる.
				if ((pit->b - ppit->b) / (ppit->a - pit->a) < (b - pit->b) / (pit->a - a)) break;

				// さもなくば pit は不必要な直線なので削除する.
				pit = prev(lines.erase(pit));
			}
		}

		// l より傾きが小さい直線のうち,l のせいで不必要になったものを削除する.
		if (next(it) != lines.end()) {
			auto nit = next(it);
			while (next(nit) != lines.end()) {
				// nit : l の次に傾きが小さい直線
				// nnit : l の次の次に傾きが小さい直線
				auto nnit = next(nit);

				// nit が必要な直線なら削除せず終わる.
				if ((nit->b - b) / (a - nit->a) < (nnit->b - nit->b) / (nit->a - nnit->a)) break;

				// さもなくば nit は不必要な直線なので削除する.
				nit = lines.erase(nit);
			}
		}
	}

	// a x + b の最小値[最大値] を返す.
	T get(T x) {
		Assert(!lines.empty());

		auto it = lines.lower_bound(Line{ x, x, false });

		if (min_flag) return it->a * x + it->b;
		else return -(it->a * x + it->b); // 最大値クエリの場合は -1 倍していたので元に戻す.
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Convex_hull_trick_integer& cht) {
		for (auto it = cht.lines.begin(); it != cht.lines.end(); it++) {
			os << *it << (next(it) != cht.lines.end() ? "," : "");
		}
		return os;
	}
#endif
};


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");
	
	int n;
	cin >> n;

	vl q(n);
	cin >> q;

	Convex_hull_trick_integer<ll> C(false);
	C.insert(0, 0);

	vl dp(n);
	rep(i, n) {
		chmax(dp[i], C.get(q[i]));
		C.insert(q[i], dp[i]);
	}

	cout << (*max_element(all(dp))) << endl;
}
0