結果

問題 No.2498 OX Operations
ユーザー KumaTachiRenKumaTachiRen
提出日時 2023-09-04 13:18:21
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,506 ms / 4,000 ms
コード長 3,361 bytes
コンパイル時間 404 ms
コンパイル使用メモリ 81,924 KB
実行使用メモリ 101,904 KB
最終ジャッジ日時 2024-06-22 11:49:07
合計ジャッジ時間 15,179 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 41 ms
53,932 KB
testcase_01 AC 40 ms
54,000 KB
testcase_02 AC 40 ms
53,564 KB
testcase_03 AC 54 ms
64,100 KB
testcase_04 AC 42 ms
53,540 KB
testcase_05 AC 41 ms
53,856 KB
testcase_06 AC 40 ms
54,536 KB
testcase_07 AC 53 ms
62,652 KB
testcase_08 AC 53 ms
63,892 KB
testcase_09 AC 51 ms
64,280 KB
testcase_10 AC 54 ms
64,288 KB
testcase_11 AC 101 ms
76,632 KB
testcase_12 AC 126 ms
77,036 KB
testcase_13 AC 124 ms
76,980 KB
testcase_14 AC 133 ms
77,168 KB
testcase_15 AC 843 ms
90,744 KB
testcase_16 AC 1,506 ms
99,992 KB
testcase_17 AC 668 ms
88,896 KB
testcase_18 AC 977 ms
94,280 KB
testcase_19 AC 849 ms
93,272 KB
testcase_20 AC 1,039 ms
95,928 KB
testcase_21 AC 1,154 ms
100,572 KB
testcase_22 AC 643 ms
89,716 KB
testcase_23 AC 567 ms
87,908 KB
testcase_24 AC 1,203 ms
101,096 KB
testcase_25 AC 1,285 ms
101,904 KB
testcase_26 AC 1,190 ms
100,732 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys


def popcount(n):
    c = (n & 0x5555555555555555) + ((n >> 1) & 0x5555555555555555)
    c = (c & 0x3333333333333333) + ((c >> 2) & 0x3333333333333333)
    c = (c & 0x0F0F0F0F0F0F0F0F) + ((c >> 4) & 0x0F0F0F0F0F0F0F0F)
    c = (c & 0x00FF00FF00FF00FF) + ((c >> 8) & 0x00FF00FF00FF00FF)
    c = (c & 0x0000FFFF0000FFFF) + ((c >> 16) & 0x0000FFFF0000FFFF)
    c = (c & 0x00000000FFFFFFFF) + ((c >> 32) & 0x00000000FFFFFFFF)
    return c


class DualSegTree:
    def __init__(self, n, comp, id):
        self.n = n
        self.comp = comp
        self.id = id
        self.sz = 1
        self.log = 0
        while self.sz < n:
            self.sz <<= 1
            self.log += 1
        self.lz = [id] * (self.sz * 2)

    def push(self, p):
        self.lz[p << 1] = self.comp(self.lz[p], self.lz[p << 1])
        self.lz[(p << 1) + 1] = self.comp(self.lz[p], self.lz[(p << 1) + 1])
        self.lz[p] = self.id

    def push_all(self, p):
        for i in range(self.log, 0, -1):
            self.push(p >> i)

    def get(self, p):
        P = p + self.sz
        self.push_all(P)
        return self.lz[P]

    def set(self, p, f):
        P = p + self.sz
        self.push_all(P)
        self.lz[P] = f

    def apply(self, l, r, f):
        if l >= r:
            return
        L = l + self.sz
        R = r + self.sz
        for i in range(self.log, 0, -1):
            if ((L >> i) << i) != L:
                self.push(L >> i)
            if ((R >> i) << i) != R:
                self.push((R - 1) >> i)
        while L < R:
            if L & 1:
                self.lz[L] = self.comp(f, self.lz[L])
                L += 1
            if R & 1:
                R -= 1
                self.lz[R] = self.comp(f, self.lz[R])
            L >>= 1
            R >>= 1


LOG = 30
MASK = (1 << LOG) - 1
MOD = 998244353


def comp(f, g):
    return ((~g[0] & f[0]) | (g[0] & f[1]), (~g[1] & f[0]) | (g[1] & f[1]))


id = (0, MASK)

s = input().split(" ")
n = int(s[0])
q = int(s[1])

m = list(map(int, input().split()))

seg = DualSegTree(n, comp, id)

for i in range(q):
    s = input().split(" ")
    l = int(s[1]) - 1
    r = int(s[2])
    x = int(s[3])
    seg.apply(l, r, (x, MASK if s[0] == "o" else MASK ^ x))


fact = [1] * 100
ifact = [1] * 100
for i in range(1, 100):
    fact[i] = fact[i - 1] * i % MOD
ifact[99] = pow(fact[99], MOD - 2, MOD)
for i in range(99, 0, -1):
    ifact[i - 1] = ifact[i] * i % MOD


def binom(n, k):
    return 0 if k < 0 or k > n else fact[n] * ifact[k] % MOD * ifact[n - k] % MOD


prod = [1] * (LOG + 1)

for p in range(n):
    r = seg.get(p)
    b = r[0]
    c = r[1]
    ma = m[p] + 1
    f = [0] * (LOG + 1)
    cnt = [0, 0, 0]
    a = popcount(((ma ^ MASK) & b) | (ma & c))
    for i in range(LOG):
        a -= (((ma ^ MASK) & b) | (ma & c)) & 1
        a += b & 1
        if ma & 1:
            for j in range(LOG + 1):
                f[j] += binom(cnt[1], j - a - cnt[2]) * (1 << (cnt[0] + cnt[2])) % MOD
        a -= b & 1
        cnt[(b & 1) + (c & 1)] += 1
        ma >>= 1
        b >>= 1
        c >>= 1
    for i in range(LOG):
        f[i + 1] += f[i]
        if f[i + 1] >= MOD:
            f[i + 1] -= MOD
    for i in range(LOG + 1):
        prod[i] = prod[i] * f[i] % MOD

ans = LOG * prod[LOG] % MOD
for i in range(LOG):
    ans -= prod[i]
    if ans < 0:
        ans += MOD

print(ans)
0