結果
問題 | No.2500 Products in a Range |
ユーザー |
![]() |
提出日時 | 2023-09-06 21:21:32 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 113 ms / 2,000 ms |
コード長 | 6,399 bytes |
コンパイル時間 | 2,663 ms |
コンパイル使用メモリ | 234,728 KB |
最終ジャッジ日時 | 2025-02-16 19:06:01 |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 61 |
ソースコード
// #define _GLIBCXX_DEBUG#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")#include <bits/stdc++.h>using namespace std;#define rep(i, n) for (int i = 0; i < int(n); i++)#define per(i, n) for (int i = (n)-1; 0 <= i; i--)#define rep2(i, l, r) for (int i = (l); i < int(r); i++)#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)#define each(e, v) for (auto& e : v)#define MM << " " <<#define pb push_back#define eb emplace_back#define all(x) begin(x), end(x)#define rall(x) rbegin(x), rend(x)#define sz(x) (int)x.size()template <typename T> void print(const vector<T>& v, T x = 0) {int n = v.size();for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');if (v.empty()) cout << '\n';}using ll = long long;using pii = pair<int, int>;using pll = pair<ll, ll>;template <typename T> bool chmax(T& x, const T& y) {return (x < y) ? (x = y, true) : false;}template <typename T> bool chmin(T& x, const T& y) {return (x > y) ? (x = y, true) : false;}template <class T>using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;template <class T> using maxheap = std::priority_queue<T>;template <typename T> int lb(const vector<T>& v, T x) {return lower_bound(begin(v), end(v), x) - begin(v);}template <typename T> int ub(const vector<T>& v, T x) {return upper_bound(begin(v), end(v), x) - begin(v);}template <typename T> void rearrange(vector<T>& v) {sort(begin(v), end(v));v.erase(unique(begin(v), end(v)), end(v));}// __int128_t gcd(__int128_t a, __int128_t b) {// if (a == 0)// return b;// if (b == 0)// return a;// __int128_t cnt = a % b;// while (cnt != 0) {// a = b;// b = cnt;// cnt = a % b;// }// return b;// }long long extGCD(long long a, long long b, long long& x, long long& y) {if (b == 0) {x = 1;y = 0;return a;}long long d = extGCD(b, a % b, y, x);y -= a / b * x;return d;}struct Union_Find_Tree {vector<int> data;const int n;int cnt;Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}int root(int x) {if (data[x] < 0) return x;return data[x] = root(data[x]);}int operator[](int i) { return root(i); }bool unite(int x, int y) {x = root(x), y = root(y);if (x == y) return false;if (data[x] > data[y]) swap(x, y);data[x] += data[y], data[y] = x;cnt--;return true;}int size(int x) { return -data[root(x)]; }int count() { return cnt; };bool same(int x, int y) { return root(x) == root(y); }void clear() {cnt = n;fill(begin(data), end(data), -1);}};template <int mod> struct Mod_Int {int x;Mod_Int() : x(0) {}Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}static int get_mod() { return mod; }Mod_Int& operator+=(const Mod_Int& p) {if ((x += p.x) >= mod) x -= mod;return *this;}Mod_Int& operator-=(const Mod_Int& p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}Mod_Int& operator*=(const Mod_Int& p) {x = (int)(1LL * x * p.x % mod);return *this;}Mod_Int& operator/=(const Mod_Int& p) {*this *= p.inverse();return *this;}Mod_Int& operator++() { return *this += Mod_Int(1); }Mod_Int operator++(int) {Mod_Int tmp = *this;++*this;return tmp;}Mod_Int& operator--() { return *this -= Mod_Int(1); }Mod_Int operator--(int) {Mod_Int tmp = *this;--*this;return tmp;}Mod_Int operator-() const { return Mod_Int(-x); }Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }bool operator==(const Mod_Int& p) const { return x == p.x; }bool operator!=(const Mod_Int& p) const { return x != p.x; }Mod_Int inverse() const {assert(*this != Mod_Int(0));return pow(mod - 2);}Mod_Int pow(long long k) const {Mod_Int now = *this, ret = 1;for (; k > 0; k >>= 1, now *= now) {if (k & 1) ret *= now;}return ret;}friend ostream& operator<<(ostream& os, const Mod_Int& p) {return os << p.x;}friend istream& operator>>(istream& is, Mod_Int& p) {long long a;is >> a;p = Mod_Int<mod>(a);return is;}};ll mpow2(ll x, ll n, ll mod) {ll ans = 1;x %= mod;while (n != 0) {if (n & 1) ans = ans * x % mod;x = x * x % mod;n = n >> 1;}ans %= mod;return ans;}template <typename T> T modinv(T a, const T& m) {T b = m, u = 1, v = 0;while (b > 0) {T t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return u >= 0 ? u % m : (m - (-u) % m) % m;}ll divide_int(ll a, ll b) {if (b < 0) a = -a, b = -b;return (a >= 0 ? a / b : (a - b + 1) / b);}// const int MOD = 1000000007;const int MOD = 998244353;using mint = Mod_Int<MOD>;mint mpow(mint x, ll n) {bool rev = n < 0;n = abs(n);mint ans = 1;while (n != 0) {if (n & 1) ans *= x;x *= x;n = n >> 1;}return (rev ? ans.inverse() : ans);}// ----- library -------// ----- library -------int main() {ios::sync_with_stdio(false);std::cin.tie(nullptr);cout << fixed << setprecision(15);ll n, l, r;cin >> n >> l >> r;vector<ll> a(n);rep(i, n) cin >> a[i];sort(all(a));vector<int> bl(n), br(n);rep(i, n) {bl[i] = n + 1, br[i] = -1;rep(j, n) if (l <= a[i] * a[j] && a[i] * a[j] <= r) chmin(bl[i], j), chmax(br[i], j);}int ans = 1;rep(i, n) rep2(j, i + 1, n) {if (a[i] * a[j] < l || r < a[i] * a[j])continue;int nl = max(i + 1, max(bl[i], bl[j])), nr = min(j - 1, min(br[i], br[j]));chmax(ans, max(0, nr - nl + 1) + 2);}cout << ans << endl;}