結果

問題 No.2501 Maximum Inversion Number
ユーザー torisasami4torisasami4
提出日時 2023-09-06 21:40:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 120 ms / 2,000 ms
コード長 7,083 bytes
コンパイル時間 2,833 ms
コンパイル使用メモリ 235,944 KB
実行使用メモリ 10,652 KB
最終ジャッジ日時 2024-09-15 13:57:11
合計ジャッジ時間 4,795 ms
ジャッジサーバーID
(参考情報)
judge2 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 59 ms
5,376 KB
testcase_02 AC 74 ms
5,376 KB
testcase_03 AC 74 ms
5,376 KB
testcase_04 AC 73 ms
10,528 KB
testcase_05 AC 76 ms
10,528 KB
testcase_06 AC 78 ms
10,652 KB
testcase_07 AC 60 ms
5,736 KB
testcase_08 AC 75 ms
6,072 KB
testcase_09 AC 26 ms
5,376 KB
testcase_10 AC 61 ms
5,376 KB
testcase_11 AC 56 ms
6,108 KB
testcase_12 AC 56 ms
6,236 KB
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 80 ms
10,524 KB
testcase_15 AC 51 ms
5,376 KB
testcase_16 AC 120 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct Union_Find_Tree {
    vector<int> data;
    const int n;
    int cnt;
 
    Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
 
    int root(int x) {
        if (data[x] < 0) return x;
        return data[x] = root(data[x]);
    }
 
    int operator[](int i) { return root(i); }
 
    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false;
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y], data[y] = x;
        cnt--;
        return true;
    }
 
    int size(int x) { return -data[root(x)]; }
 
    int count() { return cnt; };
 
    bool same(int x, int y) { return root(x) == root(y); }
 
    void clear() {
        cnt = n;
        fill(begin(data), end(data), -1);
    }
};

template <int mod> struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int& operator+=(const Mod_Int& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator-=(const Mod_Int& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator*=(const Mod_Int& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int& operator/=(const Mod_Int& p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int& operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int& operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int& p) const { return x == p.x; }

    bool operator!=(const Mod_Int& p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const Mod_Int& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, Mod_Int& p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T> T modinv(T a, const T& m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1) ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int T;
    cin >> T;
    while (T--) {
        ll n, m;
        cin >> n >> m;
        vector<ll> l(n), r(n);
        rep(i, n) cin >> l[i];
        rep(i, n) cin >> r[i];
        if (m < accumulate(all(l), 0ll) || accumulate(all(r), 0ll) < m) {
            cout << -1 << '\n';
            continue;
        }
        sort(all(l)), sort(all(r));
        vector<ll> v;
        rep(i, n) v.eb(l[i]), v.eb(r[i]);
        sort(all(v));
        auto c2 = [&](ll x) {return x * (x - 1) / 2;};
        int il = 0, ir = 0;
        ll cnt = 0, ans = c2(m);
        rep(i, n) ans -= c2(l[i]), m -= l[i];
        rep(i, n * 2) {
            if (cnt) {
                if ((v[i] - v[i - 1]) * cnt > m) {
                    ll d = m / cnt, rem = m % cnt;
                    ans -= (c2(v[i - 1] + d) - c2(v[i - 1])) * cnt;
                    ans -= (c2(v[i - 1] + d + 1) - c2(v[i - 1] + d)) * rem;
                    break;
                }
                else
                    ans -= (c2(v[i]) - c2(v[i - 1])) * cnt, m -= (v[i] - v[i - 1]) * cnt;
            }
            while (il < n && l[il] <= v[i])
                cnt++, il++;
            while (ir < n && r[ir] <= v[i])
                cnt--, ir++;
        }
        cout << ans << '\n';
    }
}
0