結果
問題 | No.3024 全単射的 |
ユーザー |
👑 |
提出日時 | 2023-09-06 22:48:56 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 259 ms / 5,000 ms |
コード長 | 32,967 bytes |
コンパイル時間 | 13,223 ms |
コンパイル使用メモリ | 323,536 KB |
最終ジャッジ日時 | 2025-02-16 19:07:37 |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 22 |
ソースコード
#ifndef INCLUDE_MODE#define INCLUDE_MODE// #define REACTIVE// #define USE_GETLINE#endif#ifdef INCLUDE_MAINinline void Solve(){// 入力受け取り。CEXPR( int , bound_N , 1e5 ); CIN_ASSERT( N , 1 , bound_N );CEXPR( ll , bound_M , 1e18 ); CIN_ASSERT( M , 2 , bound_M );CIN_A( T2<ll> , 0 , N , LR );// 座標圧縮。実装は好きにして良い。CoordinateCompress<ll> cc{};FOR( i , 0 , N ){auto& [Li,Ri] = LR[i];ASSERT( Li , 1 , M );ASSERT( Ri , Li + 1 , M );cc.SetL( --Li );cc.SetL( --Ri );}M = cc.GetL();// 辺を計算する関数。auto edge = [&]( const int& i ){auto& [Li,Ri] = LR[i];return vector<int>{ int( Li ) , int( Ri ) };};// ホップクロフトカープ法で最大マッチングを計算。実装は好きにして良い。HopcroftKarp hk{};auto mm = hk.GetMaximumMatching( N , M , edge );// 最大マッチングのサイズを出力。RETURN( mm.size() );}REPEAT_MAIN(1);#else // INCLUDE_MAIN#ifdef INCLUDE_LIBRARY// https://github.com/p-adic/cpp// VVV ライブラリは以下に挿入する。// 圧縮用#define TE template#define TY typename#define US using#define ST static#define AS assert#define IN inline#define CL class#define PU public#define OP operator#define CE constexpr#define CO const#define NE noexcept#define RE return#define WH while#define VO void#define VE vector#define LI list#define BE begin#define EN end#define SZ size#define LE length#define PW Power#define MO move#define TH this#define CRI CO int&#define CRUI CO uint&#define CRL CO ll&#define VI virtual#define IS basic_istream<char,Traits>#define OS basic_ostream<char,Traits>#define ST_AS static_assert#define reMO_CO remove_const#define is_COructible_v is_constructible_v#define rBE rbegin#define reSZ resize// Random(1KB)ll GetRand(CRI Rand_min,CRI Rand_max){AS(Rand_min <= Rand_max);ll AN = time(NULL);RE AN * rand()%(Rand_max + 1 - Rand_min)+ Rand_min;}// Map (2KB)#define DC_OF_HASH(...)struct hash<__VA_ARGS__>{IN size_t OP()(CO __VA_ARGS__& n)CO;};CL is_ordered{PU:is_ordered()= delete;TE <TY T> ST CE auto Check(CO T& t)-> decltype(t < t,true_type());ST CE false_type Check(...);TE <TY T> ST CECO bool value = is_same_v< decltype(Check(declval<T>())),true_type >;};TE <TY T>US Set = conditional_t<is_COructible_v<unordered_set<T>>,unordered_set<T>,conditional_t<is_ordered::value<T>,set<T>,VO>>;#define DF_OF_AR_FOR_MAP(MAP,OPR)TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a,CO pair<T,U>& v){a[v.first]OPR ## = v.second;RE a;}TE <TY T,TY U> IN MAP<T,U>& OP OPR ## =(MAP<T,U>& a0,CO MAP<T,U>& a1){for(auto&[t,u]:a1){a0[t]OPR ## = u;}RE a0;}TE <TY T,TY U,TY ARG> IN MAP<T,U> OP OPR(MAP<T,U> a,CO ARG& arg){RE MO(a OPR ## = arg);}#define DF_OF_ARS_FOR_MAP(MAP)DF_OF_AR_FOR_MAP(MAP,+);DF_OF_AR_FOR_MAP(MAP,-);DF_OF_AR_FOR_MAP(MAP,*);DF_OF_AR_FOR_MAP(MAP,/);DF_OF_AR_FOR_MAP(MAP,%);TE <TY T,TY U>US Map = conditional_t<is_COructible_v<unordered_map<T,int>>,unordered_map<T,U>,conditional_t<is_ordered::value<T>,map<T,U>,VO>>;DF_OF_ARS_FOR_MAP(map);DF_OF_ARS_FOR_MAP(unordered_map);// Module (6KB)#define DC_OF_CPOINT(POINT)IN CO U& POINT()CO NE#define DC_OF_POINT(POINT)IN U& POINT()NE#define DF_OF_CPOINT(POINT)TE <TY U> IN CO U& VirtualPointedSet<U>::POINT()CO NE{RE Point();}#define DF_OF_POINT(POINT)TE <TY U> IN U& VirtualPointedSet<U>::POINT()NE{RE Point();}TE <TY U>CL UnderlyingSet{PU:US type = U;};TE <TY U>CL VirtualPointedSet:VI PU UnderlyingSet<U>{PU:VI CO U& Point()CO NE = 0;VI U& Point()NE = 0;DC_OF_CPOINT(Unit);DC_OF_CPOINT(Zero);DC_OF_CPOINT(One);DC_OF_CPOINT(Infty);DC_OF_POINT(init);DC_OF_POINT(root);};TE <TY U>CL PointedSet:VI PUVirtualPointedSet<U>{PU:U m_b_U;IN PointedSet(U b_u = U());IN CO U& Point()CO NE;IN U& Point()NE;};TE <TY U>CL VirtualNSet:VI PU UnderlyingSet<U>{PU:VI U Transfer(CO U& u)= 0;IN U Inverse(CO U& u);};TE <TY U,TY F_U>CL AbstractNSet:VI PU VirtualNSet<U>{PU:F_U m_f_U;IN AbstractNSet(F_U f_U);IN AbstractNSet<U,F_U>& OP=(CO AbstractNSet&)NE;IN U Transfer(CO U& u);};TE <TY U>CL VirtualMagma:VI PU UnderlyingSet<U>{PU:VI U Product(U u0,CO U& u1)= 0;IN U Sum(U u0,CO U& u1);};TE <TY U = ll>CL AdditiveMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U = ll>CLMultiplicativeMagma:VI PU VirtualMagma<U>{PU:IN U Product(U u0,CO U& u1);};TE <TY U,TY M_U>CL AbstractMagma:VI PU VirtualMagma<U>{PU:M_U m_m_U;INAbstractMagma(M_U m_U);IN AbstractMagma<U,M_U>& OP=(CO AbstractMagma<U,M_U>&)NE;IN U Product(U u0,CO U& u1);};TE <TY U> IN PointedSet<U>::PointedSet(U b_U):m_b_U(MO(b_U)){}TE <TY U> IN CO U& PointedSet<U>::Point()CO NE{RE m_b_U;}TE <TY U> IN U& PointedSet<U>::Point()NE{RE m_b_U;}DF_OF_CPOINT(Unit);DF_OF_CPOINT(Zero);DF_OF_CPOINT(One);DF_OF_CPOINT(Infty);DF_OF_POINT(init);DF_OF_POINT(root);TE <TY U,TY F_U> IN AbstractNSet<U,F_U>::AbstractNSet(F_U f_U):m_f_U(MO(f_U)){ST_AS(is_invocable_r_v<U,F_U,U>);}TE <TY U,TY F_U> IN AbstractNSet<U,F_U>&AbstractNSet<U,F_U>::operator=(CO AbstractNSet<U,F_U>&)NE{RE *TH;}TE <TY U,TY F_U> IN U AbstractNSet<U,F_U>::Transfer(CO U& u){RE m_f_U(u);}TE<TY U> IN U VirtualNSet<U>::Inverse(CO U& u){RE Transfer(u);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>::AbstractMagma(M_U m_U):m_m_U(MO(m_U)){ST_AS(is_invocable_r_v<U,M_U,U,U>);}TE <TY U,TY M_U> IN AbstractMagma<U,M_U>& AbstractMagma<U,M_U>::OP=(CO AbstractMagma<U,M_U>&)NE{RE *TH;}TE<TY U> IN U AdditiveMagma<U>::Product(U u0,CO U& u1){RE MO(u0 += u1);}TE <TY U> IN U MultiplicativeMagma<U>::Product(U u0,CO U& u1){RE MO(u0 *=u1);}TE <TY U,TY M_U> IN U AbstractMagma<U,M_U>::Product(U u0,CO U& u1){RE m_m_U(MO(u0),u1);}TE <TY U> IN U VirtualMagma<U>::Sum(U u0,CO U& u1){RE Product(MO(u0),u1);}TE <TY U>CL VirtualMonoid:VI PU VirtualMagma<U>,VI PU VirtualPointedSet<U>{};TE <TY U = ll>CL AdditiveMonoid:VI PU VirtualMonoid<U>,PU AdditiveMagma<U>,PU PointedSet<U>{};TE <TY U = ll>CL MultiplicativeMonoid:VI PU VirtualMonoid<U>,PU MultiplicativeMagma<U>,PU PointedSet<U>{PU:INMultiplicativeMonoid(U e_U);};TE <TY U,TY M_U>CL AbstractMonoid:VI PU VirtualMonoid<U>,PU AbstractMagma<U,M_U>,PU PointedSet<U>{PU:INAbstractMonoid(M_U m_U,U e_U);};TE <TY U> IN MultiplicativeMonoid<U>::MultiplicativeMonoid(U e_U):PointedSet<U>(MO(e_U)){}TE <TY U,TY M_U> IN AbstractMonoid<U,M_U>::AbstractMonoid(M_U m_U,U e_U):AbstractMagma<U,M_U>(MO(m_U)),PointedSet<U>(MO(e_U)){}TE <TY U>CL VirtualGroup:VI PU VirtualMonoid<U>,VI PU VirtualPointedSet<U>,VI PU VirtualNSet<U>{};TE <TY U = ll>CL AdditiveGroup:VI PU VirtualGroup<U>,PU AdditiveMonoid<U>{PU:IN U Transfer(CO U& u);};TE <TY U,TY M_U,TY I_U>CL AbstractGroup:VI PU VirtualGroup<U>,PU AbstractMonoid<U,M_U>,PUAbstractNSet<U,I_U>{PU:IN AbstractGroup(M_U m_U,U e_U,I_U i_U);};TE <TY U,TY M_U,TY I_U> IN AbstractGroup<U,M_U,I_U>::AbstractGroup(M_U m_U,U e_U,I_U i_U):AbstractMonoid<U,M_U>(MO(m_U),MO(e_U)),AbstractNSet<U,I_U>(MO(i_U)){}TE <TY U> IN U AdditiveGroup<U>::Transfer(CO U& u){RE -u;}TE <TY R,TY U>CL VirtualRSet:VI PU UnderlyingSet<U>{PU:VI U Action(CO R& r,U u)= 0;IN U PW(U u,CO R& r);IN U ScalarProduct(CO R& r,U u);};TE <TY U,TYMAGMA>CL RegularRSet:VI PU VirtualRSet<U,U>,PU MAGMA{PU:IN RegularRSet(MAGMA magma);IN U Action(CO U& r,U u);};TE <TY MAGMA> RegularRSet(MAGMAmagma)-> RegularRSet<inner_t<MAGMA>,MAGMA>;TE <TY R,TY U,TY O_U>CL AbstractRSet:VI PU VirtualRSet<R,U>{PU:O_U m_o_U;IN AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U);IN AbstractRSet<R,U,O_U>& OP=(CO AbstractRSet<R,U,O_U>&)NE;IN U Action(CO R& r,U u);};TE <TY R,TY U,TY O_U,TY GROUP>CLAbstractModule:PU AbstractRSet<R,U,O_U>,PU GROUP{PU:IN AbstractModule(CO R& dummy,O_U o_U,GROUP M);};TE <TY R,TY O_U,TY GROUP> AbstractModule(COR& dummy,O_U o_U,GROUP M)-> AbstractModule<R,inner_t<GROUP>,O_U,GROUP>;TE <TY R,TY U>CL Module:VI PU VirtualRSet<R,U>,PU AdditiveGroup<U>{PU:IN UAction(CO R& r,U u);};TE <TY R,TY MAGMA> IN RegularRSet<R,MAGMA>::RegularRSet(MAGMA magma):MAGMA(MO(magma)){}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>::AbstractRSet(CO R& dummy0,CO U& dummy1,O_U o_U):m_o_U(MO(o_U)){ST_AS(is_invocable_r_v<U,O_U,R,U>);}TE <TY R,TY U,TY O_U,TY GROUP> IN AbstractModule<R,U,O_U,GROUP>::AbstractModule(CO R& dummy,O_U o_U,GROUP M):AbstractRSet<R,U,O_U>(dummy,M.One(),MO(o_U)),GROUP(MO(M)){ST_AS(is_same_v<U,inner_t<GROUP>>);}TE <TY R,TY U,TY O_U> IN AbstractRSet<R,U,O_U>& AbstractRSet<R,U,O_U>::OP=(CO AbstractRSet<R,U,O_U>&)NE{RE *TH;}TE <TY U,TY MAGMA> IN URegularRSet<U,MAGMA>::Action(CO U& r,U u){RE TH->Product(r,MO(u));}TE <TY R,TY U,TY O_U> IN U AbstractRSet<R,U,O_U>::Action(CO R& r,U u){RE m_o_U(r,MO(u));}TE <TY R,TY U> IN U Module<R,U>::Action(CO R& r,U u){RE MO(u *= r);}TE <TY R,TY U> IN U VirtualRSet<R,U>::PW(U u,CO R& r){RE Action(r,MO(u));}TE <TY R,TY U> IN U VirtualRSet<R,U>::ScalarProduct(CO R& r,U u){RE Action(r,MO(u));}// Graph (5KB)TE <TY T,TY R1,TY R2,TY E>CL VirtualGraph:VI PU UnderlyingSet<T>{PU:VI R1 Enumeration(CRI i)= 0;IN R2 Enumeration_inv(CO T& t);TE <TY PATH> IN R2Enumeration_inv(CO PATH& p);IN VO Reset();VI CRI SZ()CO NE = 0;VI E& edge()NE = 0;VI ret_t<E,T> Edge(CO T& t)= 0;TE <TY PATH> IN ret_t<E,T> Edge(CO PATH& p);ST IN CO T& Vertex(CO T& t)NE;TE <TY PATH> ST IN CO T& Vertex(CO PATH& e)NE;VI R2 Enumeration_inv_Body(CO T& t)= 0;};TE <TY T,TY R1,TY R2,TY E>CL EdgeImplimentation:VI PU VirtualGraph<T,R1,R2,E>{PU:int m_SZ;E m_edge;IN EdgeImplimentation(CRI SZ,E edge);IN CRI SZ()CO NE;IN E&edge()NE;IN ret_t<E,T> Edge(CO T& t);};TE <TY E>CL Graph:PU EdgeImplimentation<int,CRI,CRI,E>{PU:IN Graph(CRI SZ,E edge);IN CRI Enumeration(CRI i);TE <TY F> IN Graph<F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CRI t);};TE <TY T,TY Enum_T,TY Enum_T_inv,TY E>CL EnumerationGraph:PUEdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>{PU:Enum_T m_enum_T;Enum_T_inv m_enum_T_inv;IN EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge);IN ret_t<Enum_T,int> Enumeration(CRI i);TE <TY F> IN EnumerationGraph<T,Enum_T,Enum_T_inv,F> GetGraph(F edge)CO;INret_t<Enum_T_inv,T> Enumeration_inv_Body(CO T& t);};TE <TY Enum_T,TY Enum_T_inv,TY E> EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_inv enum_T_inv,E edge)-> EnumerationGraph<decldecay_t(declval<Enum_T>()(0)),Enum_T,Enum_T_inv,E>;TE <TY T,TY E>CL MemorisationGraph:PU EdgeImplimentation<T,T,CRI,E>{PU:int m_LE;VE<T> m_memory;Map<T,int> m_memory_inv;IN MemorisationGraph(CRI SZ,CO T& dummy,E edge);IN T Enumeration(CRI i);IN VO Reset();TE <TY F> IN MemorisationGraph<T,F> GetGraph(F edge)CO;IN CRI Enumeration_inv_Body(CO T& t);};TE <TY T,TY R1,TY R2,TY E> IN EdgeImplimentation<T,R1,R2,E>::EdgeImplimentation(CRI SZ,E edge):m_SZ(SZ),m_edge(MO(edge)){ST_AS(is_COructible_v<T,R1>&& is_COructible_v<int,R2> && is_invocable_v<E,T>);}TE <TY E> IN Graph<E>::Graph(CRI SZ,E edge):EdgeImplimentation<int,CRI,CRI,E>(SZ,MO(edge)){}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN EnumerationGraph<T,Enum_T,Enum_T_inv,E>::EnumerationGraph(CRI SZ,Enum_T enum_T,Enum_T_invenum_T_inv,E edge):EdgeImplimentation<T,ret_t<Enum_T,int>,ret_t<Enum_T_inv,T>,E>(SZ,MO(edge)),m_enum_T(MO(enum_T)),m_enum_T_inv(MO(enum_T_inv)){}TE <TY T,TY E> IN MemorisationGraph<T,E>::MemorisationGraph(CRI SZ,CO T& dummy,E edge):EdgeImplimentation<T,T,CRI,E>(SZ,MO(edge)),m_LE(),m_memory(),m_memory_inv(){ST_AS(is_invocable_v<E,T>);}TE <TY E> IN CRI Graph<E>::Enumeration(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TYE> IN ret_t<Enum_T,int> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration(CRI i){RE m_enum_T(i);}TE <TY T,TY E> IN T MemorisationGraph<T,E>::Enumeration(CRI i){AS(0 <= i && i < m_LE);RE m_memory[i];}TE <TY T,TY R1,TY R2,TY E> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO T& t){RE Enumeration_inv_Body(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN R2 VirtualGraph<T,R1,R2,E>::Enumeration_inv(CO PATH& p){REEnumeration_inv_Body(get<0>(p));}TE <TY E> IN CRI Graph<E>::Enumeration_inv_Body(CRI i){RE i;}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> IN ret_t<Enum_T_inv,T> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::Enumeration_inv_Body(CO T& t){RE m_enum_T_inv(t);}TE <TY T,TY E> IN CRI MemorisationGraph<T,E>::Enumeration_inv_Body(CO T& t){if(m_memory_inv.count(t)== 0){AS(m_LE < TH->SZ());m_memory.push_back(t);RE m_memory_inv[t]= m_LE++;}REm_memory_inv[t];}TE <TY T,TY R1,TY R2,TY E> VO VirtualGraph<T,R1,R2,E>::Reset(){}TE <TY T,TY E> IN VO MemorisationGraph<T,E>::Reset(){m_LE = 0;m_memory.clear();m_memory_inv.clear();}TE <TY T,TY R1,TY R2,TY E> IN CRI EdgeImplimentation<T,R1,R2,E>::SZ()CO NE{RE m_SZ;}TE <TY T,TY R1,TY R2,TY E> IN E& EdgeImplimentation<T,R1,R2,E>::edge()NE{RE m_edge;}TE <TY T,TY R1,TY R2,TY E> IN ret_t<E,T> EdgeImplimentation<T,R1,R2,E>::Edge(COT& t){RE m_edge(t);}TE <TY T,TY R1,TY R2,TY E> TE <TY PATH> IN ret_t<E,T> VirtualGraph<T,R1,R2,E>::Edge(CO PATH& p){RE Edge(get<0>(p));}TE <TY E>TE <TY F> IN Graph<F> Graph<E>::GetGraph(F edge)CO{RE Graph<F>(TH->SZ(),MO(edge));}TE <TY T,TY Enum_T,TY Enum_T_inv,TY E> TE <TY F> INEnumerationGraph<T,Enum_T,Enum_T_inv,F> EnumerationGraph<T,Enum_T,Enum_T_inv,E>::GetGraph(F edge)CO{RE EnumerationGraph<T,Enum_T,Enum_T_inv,F>(TH->SZ(),m_enum_T,m_enum_T_inv,MO(edge));}TE <TY T,TY E> TE <TY F> IN MemorisationGraph<T,F> MemorisationGraph<T,E>::GetGraph(F edge)CO{REMemorisationGraph<T,F>(TH->SZ(),MO(edge));}TE <TY T,TY R1,TY R2,TY E> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO T& t)NE{RE t;}TE <TY T,TY R1,TYR2,TY E> TE <TY PATH> IN CO T& VirtualGraph<T,R1,R2,E>::Vertex(CO PATH& e)NE{RE Vertex(get<0>(e));}TE <TY INT = ll>CL CoordinateCompress{PU:set<INT> m_r;VE<INT*> m_l;IN CoordinateCompress();IN VO SetR(INT t);TE <TY U,TE <TY...> TY V > IN VO SetR(V<U> a);pair<VE<INT>,unordered_map<INT,int>> GetR();IN VO clearR();IN VO SetL(INT& t);TE <TY U,TE <TY...> TY V > IN VO SetL(V<U>& a);int GetL();INVO clearL();};TE <TY INT> IN CoordinateCompress<INT>::CoordinateCompress():m_r(),m_l(){}TE <TY INT> IN VO CoordinateCompress<INT>::SetR(INT t){m_r.insert(MO(t));}TE <TY INT> TE <TY U,TE <TY...> TY V > IN VO CoordinateCompress<INT>::SetR(V<U> a){for(auto& t:a){SetR(MO(t));}}TE <TY INT>pair<VE<INT>,unordered_map<INT,int>> CoordinateCompress<INT>::GetR(){pair<VE<INT>,unordered_map<INT,int>> AN{};AN.first.reSZ(m_r.SZ());int i = 0;for(auto t:m_r){AN.first[i]= t;AN.second[t]= i++;}RE AN;}TE <TY INT> IN VO CoordinateCompress<INT>::clearR(){m_r.clear();}TE <TY INT> IN VOCoordinateCompress<INT>::SetL(INT& t){m_l.push_back(&t);}TE <TY INT> TE <TY U,TE <TY...> TY V > IN VO CoordinateCompress<INT>::SetL(V<U>& a){for(auto& t:a){SetL(t);}}TE <TY INT>int CoordinateCompress<INT>::GetL(){int i = -1;if(!m_l.empty()){auto comp =[](INT* CO& p0,INT* CO& p1){RE *p0 <*p1;};sort(m_l.BE(),m_l.end(),comp);INT temp = *(m_l[0])- 1;for(auto p:m_l){*p = temp == *p?i:(temp = *p,++i);}}RE ++i;}TE <TY INT> IN VOCoordinateCompress<INT>::clearL(){m_l.clear();}TE <TY T,TY GRAPH>CL VirtualBreadthFirstSearch{PU:GRAPH& m_G;T m_not_found;bool m_initialised;LI<T> m_next;VE<bool> m_found;VE<T> m_prev;INVirtualBreadthFirstSearch(GRAPH& G,CO T& not_found);TE <TY Arg> IN VirtualBreadthFirstSearch(GRAPH& G,CO T& not_found,Arg&& init);IN VOInitialise();IN VO Initialise(CO T& init);IN VO Initialise(LI<T> inits);IN VO Shift(CO T& init);IN VO Shift(LI<T> inits);IN CRI SZ()CO NE;IN VE<bool>::reference found(CO T& t);IN CO T& prev(CO T& t);IN T Next();TE <TY U = T> auto GetDistance()-> enable_if_t<is_same_v<GRAPH,MemorisationGraph<U,decldecay_t(declval<GRAPH>().edge())>>,Map<T,int>>;TE <TY U = T> auto GetDistance()-> enable_if_t<!is_same_v<GRAPH,MemorisationGraph<U,decldecay_t(declval<GRAPH>().edge())>>,VE<int>>;pair<VE<int>,int> GetConnectedComponent();VI VO Push(LI<T>& next,CO T& t)= 0;TE <TY PATH> IN VO Push(LI<T>& next,CO PATH& p);};TE <TY T,TY GRAPH> IN VirtualBreadthFirstSearch<T,GRAPH>::VirtualBreadthFirstSearch(GRAPH& G,CO T& not_found):m_G(G),m_not_found(not_found),m_initialised(false),m_next(),m_found(),m_prev(){ST_AS(is_same_v<inner_t<GRAPH>,T>);}TE <TY T,TY GRAPH> TE <TY Arg> INVirtualBreadthFirstSearch<T,GRAPH>::VirtualBreadthFirstSearch(GRAPH& G,CO T& not_found,Arg&& init):VirtualBreadthFirstSearch<T,GRAPH>(G,not_found){Initialise(forward<Arg>(init));}TE <TY T,TY GRAPH> IN VO VirtualBreadthFirstSearch<T,GRAPH>::Initialise(){m_initialised = true;CRI V = SZ();m_next.clear();m_found = VE<bool>(V);m_prev = VE<T>(V,m_not_found);}TE <TY T,TY GRAPH> IN VO VirtualBreadthFirstSearch<T,GRAPH>::Initialise(COT& init){auto&& i = m_G.Enumeration_inv(init);AS(0 <= i && i < SZ());Initialise();m_next.push_back(init);m_found[i]= true;}TE <TY T,TY GRAPH> INVO VirtualBreadthFirstSearch<T,GRAPH>::Initialise(LI<T> inits){Initialise();m_next = MO(inits);CRI V = SZ();for(auto& u:m_next){auto&& i = m_G.Enumeration_inv(u);AS(0 <= i && i < V);m_found[i]= true;}}TE <TY T,TY GRAPH> IN VO VirtualBreadthFirstSearch<T,GRAPH>::Shift(CO T& init){if(m_initialised){CRI V = SZ();auto&& i = m_G.Enumeration_inv(init);AS(0 <= i && i < V);m_next.clear();if(! m_found[i]){m_next.push_back(init);m_found[i]= true;}}else{Initialise(init);}}TE <TY T,TY GRAPH> IN VO VirtualBreadthFirstSearch<T,GRAPH>::Shift(LI<T> inits){if(m_initialised){m_next.clear();CRI V = SZ();for(auto& u:m_next){auto&& i = m_G.Enumeration_inv(u);AS(0 <= i && i < V);if(! m_found[i]){m_next.push_back(u);m_found[i]= true;}}}else{Initialise(MO(inits));}}TE <TY T,TY GRAPH> IN CRI VirtualBreadthFirstSearch<T,GRAPH>::SZ()CO NE{RE m_G.SZ();}TE <TY T,TY GRAPH> IN VE<bool>::reference VirtualBreadthFirstSearch<T,GRAPH>::found(CO T& t){auto&& i = m_G.Enumeration_inv(t);AS(0 <= i && i < SZ());if(!m_initialised){Initialise();}RE m_found[i];}TE <TY T,TY GRAPH> IN CO T& VirtualBreadthFirstSearch<T,GRAPH>::prev(CO T& t){auto&& i = m_G.Enumeration_inv(t);AS(0 <= i && i < SZ());if(!m_initialised){Initialise();}RE m_prev[i];}TE <TY T,TY GRAPH> IN T VirtualBreadthFirstSearch<T,GRAPH>::Next(){if(m_next.empty()){RE m_not_found;}CO T t_curr = m_next.front();m_next.pop_front();auto&& edge = m_G.Edge(t_curr);for(auto& t:edge){auto&& i = m_G.Enumeration_inv(t);auto&& found_i = m_found[i];if(! found_i){Push(m_next,t);m_prev[i]= t_curr;found_i = true;}}RE t_curr;}TE <TY T,TY GRAPH> TE <TY U>auto VirtualBreadthFirstSearch<T,GRAPH>::GetDistance()-> enable_if_t<is_same_v<GRAPH,MemorisationGraph<U,decldecay_t(declval<GRAPH>().edge())>>,Map<T,int>>{Map<T,int> AN{};for(auto IT = m_next.BE(),EN = m_next.EN();IT != EN;IT++){AN[*IT]= 0;}T t;WH((t = Next())!= m_not_found){if(AN.count(t) == 0){AN[t]= AN[m_prev[m_G.Enumeration_inv(t)]]+ 1;}}RE AN;}TE <TY T,TY GRAPH> TE <TY U>autoVirtualBreadthFirstSearch<T,GRAPH>::GetDistance()-> enable_if_t<!is_same_v<GRAPH,MemorisationGraph<U,decldecay_t(declval<GRAPH>().edge())>>,VE<int>>{VE AN(SZ(),-1);for(auto IT = m_next.BE(),EN = m_next.EN();IT != EN;IT++){AN[m_G.Enumeration_inv(*IT)]= 0;}T t;WH((t = Next())!=m_not_found){auto&& i = m_G.Enumeration_inv(t);int& AN_i = AN[i];AN_i == -1?AN_i = AN[m_G.Enumeration_inv(m_prev[i])]+ 1:AN_i;}RE AN;}TE <TY T,TYGRAPH>pair<VE<int>,int> VirtualBreadthFirstSearch<T,GRAPH>::GetConnectedComponent(){ST_AS(!is_same_v<GRAPH,MemorisationGraph<T,decldecay_t(m_G.edge())>>);CRI V = SZ();VE cc_num(V,-1);int count = 0;for(int i = 0;i < V;i++){if(cc_num[i]== -1){Shift(m_G.Enumeration(i));T t = Next();if(t !=m_not_found){WH(t != m_not_found){cc_num[m_G.Enumeration_inv(t)]= count;t = Next();}count++;}}}RE{MO(cc_num),MO(count)};}TE <TY T,TY GRAPH> TE<TY PATH> IN VO VirtualBreadthFirstSearch<T,GRAPH>::Push(LI<T>& next,CO PATH& p){Push(next,get<0>(p));}TE <TY T,TY GRAPH>CL BreadthFirstSearch:PU VirtualBreadthFirstSearch<T,GRAPH>{PU:TE <TY...Args> IN BreadthFirstSearch(GRAPH& G,CO T& not_found,Args&&... args);IN VO Push(LI<T>& next,CO T& t);};TE <TY T,TY GRAPH> TE <TY...Args> IN BreadthFirstSearch<T,GRAPH>::BreadthFirstSearch(GRAPH& G,CO T& not_found,Args&&... args):VirtualBreadthFirstSearch<T,GRAPH>(G,not_found,forward<Args>(args)...){}TE <TY T,TY GRAPH> IN VO BreadthFirstSearch<T,GRAPH>::Push(LI<T>& next,CO T& t){next.push_back(t);}// (S,T,edge)が二部グラフである場合のみサポート。// edgeのサイズをeと置く。最大二部マッチング問題を// 時間計算量O((S+T+e)√(S+T))// 空間計算量O(S+T+e)// で解く。特に// - eがO(ST)の時は時間計算量O(ST√(S+T))// - eがO(S+T)の時は時間計算量O((S+T)√(S+T))// で解く。class HopcroftKarp{public:template <typename Edge> vector<pair<int,int>> GetMaximumMatching( const int& S , const int& T , Edge edge );};template <typename Edge> vector<pair<int,int>> HopcroftKarp::GetMaximumMatching( const int& S , const int& T , Edge edge ){static_assert( is_invocable_r_v<vector<int>,Edge,const int&> );unordered_set<int> unchosen_source{};vector<int> prev( T , -1 );for( int s = 0 ; s < S ; s++ ){unchosen_source.insert( s );}// BFSのコンストラクタに渡す。// (1) w=0の時は、未選択なSの頂点vectorを返す。// (2) 0<w<=Sの時は、s=w-1からの有向辺の終端全体のvectorを返す。// (3) S<w<=S+Tの時は、t=w-S-1が未選択ならば空vectorを返し、// 選択済みならば対応する有向辺の始端sのみからなるvectorを返す。auto edge_shifted = [&]( const int& w ){vector<int> answer{};if( w == 0 ){for( auto& us : unchosen_source ){answer.push_back( 1 + us );}} else if( w <= S ){auto&& edge_w = edge( w - 1 );answer.reserve( edge_w.size() );for( auto& t : edge_w ){answer.push_back( 1 + S + t );}} else {const int t = w - 1 - S;assert( t < T );const int& s = prev[t];if( s != -1 ){assert( 0 <= s && s < S );answer.push_back( 1 + s );}}return answer;};Graph graph{ 1 + S + T , move( edge_shifted ) };BreadthFirstSearch bfs{ graph , -1 };vector<bool> chosen_source( S );vector<bool> chosen_target( T );vector<unordered_map<int,bool>> chosen_edge( S );vector<int> depth( 1 + S + T );int depth_min = -1;vector<int> root( S + T );vector<int> new_chosen_target{ 0 };int v , w;bool found;while( ! new_chosen_target.empty() ){new_chosen_target.clear();bfs.Initialise( 0 );v = bfs.Next();found = false;while( ( v = bfs.Next() ) != -1 ){w = bfs.prev( v );int& depth_v = depth[v] = depth[w] + 1;if( found && depth_v > depth_min ){break;}if( w == 0 ){const int s = v - 1;assert( 0 <= s && s < S );root[s] = s;} else {root[v - 1] = root[w - 1];}if( ( depth_v & 1 ) == 0 ){const int t = v - 1 - S;assert( 0 <= t && t < T );auto&& chosen_target_t = chosen_target[t];if( !chosen_target_t ){const int& s = root[v - 1];assert( 0 <= s && s < S );auto&& chosen_source_s = chosen_source[s];if( !chosen_source_s ){chosen_source_s = true;chosen_target_t = true;new_chosen_target.push_back( v );if( !found ){found = true;depth_min = depth_v;}}}}}for( auto& nct : new_chosen_target ){int* p[2] = { &w , &v };int*& p0 = p[0];int*& p1 = p[1];v = nct;while( ( w = bfs.prev( v ) ) != 0 ){const int s = *p0 - 1;const int t = *p1 - 1 - S;assert( 0 <= s && s < S && 0 <= t && t < T );if( chosen_edge[s][t] ^= true ){prev[t] = s;}swap( w , v );swap( p0 , p1 );}const int s = v - 1;assert( 0 <= s && s < S && unchosen_source.count( s ) == 1 );unchosen_source.erase( s );}}vector<pair<int,int>> answer{};for( int t = 0 ; t < T ; t++ ){const int& s = prev[t];if( s != -1 ){assert( 0 <= s && s < S && 0 <= t && t < T );answer.push_back( { s , t } );}}return answer;}// AAA ライブラリは以上に挿入する。#define INCLUDE_MAIN#include __FILE__#else // INCLUDE_LIBRARY#ifdef DEBUG#define _GLIBCXX_DEBUG#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE2 )#define SIGNAL signal( SIGABRT , &AlertAbort );#define ASSERT( A , MIN , MAX ) CERR( "ASSERTチェック: " , ( MIN ) , ( ( MIN ) <= A ? "<=" : ">" ) , A , ( A <= ( MAX ) ? "<=" : ">" ) , ( MAX )); assert( ( MIN ) <= A && A <= ( MAX ) )#define CERR( ... ) VariadicCout( cerr , __VA_ARGS__ ) << endl#define COUT( ... ) VariadicCout( cout << "出力: " , __VA_ARGS__ ) << endl#define CERR_A( A , N ) OUTPUT_ARRAY( cerr , A , N ) << endl#define COUT_A( A , N ) cout << "出力: "; OUTPUT_ARRAY( cout , A , N ) << endl#define CERR_ITR( A ) OUTPUT_ITR( cerr , A ) << endl#define COUT_ITR( A ) cout << "出力: "; OUTPUT_ITR( cout , A ) << endl#else#pragma GCC optimize ( "O3" )#pragma GCC optimize ( "unroll-loops" )#pragma GCC target ( "sse4.2,fma,avx2,popcnt,lzcnt,bmi2" )#define SIGNAL#define DEXPR( LL , BOUND , VALUE1 , VALUE2 ) CEXPR( LL , BOUND , VALUE1 )#define ASSERT( A , MIN , MAX ) assert( ( MIN ) <= A && A <= ( MAX ) )#define CERR( ... )#define COUT( ... ) VariadicCout( cout , __VA_ARGS__ ) << ENDL#define CERR_A( N , A )#define COUT_A( N , A ) OUTPUT_ARRAY( cout , N , A ) << ENDL#define CERR_ITR( A )#define COUT_ITR( A ) OUTPUT_ITR( cout , A ) << ENDL#endif#ifdef REACTIVE#define ENDL endl#else#define ENDL "\n"#endif#ifdef USE_GETLINE#define SET_LL( A ) { GETLINE( A ## _str ); A = stoll( A ## _str ); }#define GETLINE_SEPARATE( SEPARATOR , ... ) string __VA_ARGS__; VariadicGetline( cin , SEPARATOR , __VA_ARGS__ )#define GETLINE( ... ) GETLINE_SEPARATE( '\n' , __VA_ARGS__ )#else#define SET_LL( A ) cin >> A#define CIN( LL , ... ) LL __VA_ARGS__; VariadicCin( cin , __VA_ARGS__ )#define SET_A( I , N , ... ) VariadicResize( N + I , __VA_ARGS__ ); FOR( VARIABLE_FOR_SET_A , 0 , N ){ VariadicSet( cin , VARIABLE_FOR_SET_A + I ,__VA_ARGS__ ); }#define CIN_A( LL , I , N , ... ) VE<LL> __VA_ARGS__; SET_A( I , N , __VA_ARGS__ );#endif#include <bits/stdc++.h>using namespace std;#define REPEAT_MAIN( BOUND ) int main(){ ios_base::sync_with_stdio( false ); cin.tie( nullptr ); SIGNAL; CEXPR( int , bound_test_case_num , BOUND );int test_case_num = 1; if constexpr( bound_test_case_num > 1 ){ CERR( "テストケースの個数を入力してください。" ); SET_ASSERT( test_case_num , 1 ,bound_test_case_num ); } REPEAT( test_case_num ){ if constexpr( bound_test_case_num > 1 ){ CERR( "testcase " , VARIABLE_FOR_REPEAT_test_case_num, ":" ); } Solve(); CERR( "" ); } }#define START_WATCH chrono::system_clock::time_point watch = chrono::system_clock::now()#define CURRENT_TIME static_cast<double>( chrono::duration_cast<chrono::microseconds>( chrono::system_clock::now() - watch ).count() / 1000.0 )#define CHECK_WATCH( TL_MS ) ( CURRENT_TIME < TL_MS - 100.0 )#define CEXPR( LL , BOUND , VALUE ) constexpr LL BOUND = VALUE#define SET_ASSERT( A , MIN , MAX ) SET_LL( A ); ASSERT( A , MIN , MAX )#define SET_A_ASSERT( I , N , A , MIN , MAX ) FOR( VARIABLE_FOR_SET_A , 0 , N ){ SET_ASSERT( A[VARIABLE_FOR_SET_A + I] , MIN , MAX ); }#define CIN_ASSERT( A , MIN , MAX ) decldecay_t( MAX ) A; SET_ASSERT( A , MIN , MAX )#define CIN_A_ASSERT( I , N , A , MIN , MAX ) vector<decldecay_t( MAX )> A( N + I ); SET_A_ASSERT( I , N , A , MIN , MAX )#define FOR( VAR , INITIAL , FINAL_PLUS_ONE ) for( decldecay_t( FINAL_PLUS_ONE ) VAR = INITIAL ; VAR < FINAL_PLUS_ONE ; VAR ++ )#define FOREQ( VAR , INITIAL , FINAL ) for( decldecay_t( FINAL ) VAR = INITIAL ; VAR <= FINAL ; VAR ++ )#define FOREQINV( VAR , INITIAL , FINAL ) for( decldecay_t( INITIAL ) VAR = INITIAL ; VAR + 1 > FINAL ; VAR -- )#define ITR( ARRAY ) auto begin_ ## ARRAY = ARRAY .BE() , itr_ ## ARRAY = begin_ ## ARRAY , end_ ## ARRAY = ARRAY .EN()#define FOR_ITR( ARRAY ) for( ITR( ARRAY ) , itr = itr_ ## ARRAY ; itr_ ## ARRAY != end_ ## ARRAY ; itr_ ## ARRAY ++ , itr++ )#define RUN( VAR , ARRAY ) for( auto&& VAR : ARRAY )#define REPEAT( HOW_MANY_TIMES ) FOR( VARIABLE_FOR_REPEAT_ ## HOW_MANY_TIMES , 0 , HOW_MANY_TIMES )#define SET_PRECISION( DECIMAL_DIGITS ) cout << fixed << setprecision( DECIMAL_DIGITS )#define RETURN( ... ) COUT( __VA_ARGS__ ); return// 型のエイリアス#define decldecay_t( VAR ) decay_t<decltype( VAR )>template <typename F , typename...Args> using ret_t = decltype( declval<F>()( declval<Args>()... ) );template <typename T> using inner_t = typename T::type;using uint = unsigned int;using ll = long long;using ull = unsigned long long;using ld = long double;using lld = __float128;template <typename INT> using T2 = pair<INT,INT>;template <typename INT> using T3 = tuple<INT,INT,INT>;template <typename INT> using T4 = tuple<INT,INT,INT,INT>;using path = pair<int,ll>;// 入出力用template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator>>( basic_istream<char,Traits>& is , V<T,U>& arg ) -> decltype((get<0>(arg),is))& { return is >> get<0>( arg ) >> get<1>( arg ); }template <class Traits , typename T , typename U , typename V> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ); }template <class Traits , typename T , typename U , typename V , typename W> inline basic_istream<char,Traits>& operator>>( basic_istream<char,Traits>& is , tuple<T,U,V,W>& arg ) { return is >> get<0>( arg ) >> get<1>( arg ) >> get<2>( arg ) >> get<3>( arg ); }template <class Traits , typename T , typename U , template <typename...> typename V> inline auto operator<<( basic_ostream<char,Traits>& os , constV<T,U>& arg ) -> decltype((get<0>(arg),os))& { return os << get<0>( arg ) << " " << get<1>( arg ); }template <class Traits , typename T , typename U , typename V> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , consttuple<T,U,V>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ); }template <class Traits , typename T , typename U , typename V , typename W> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const tuple<T,U,V,W>& arg ) { return os << get<0>( arg ) << " " << get<1>( arg ) << " " << get<2>( arg ) << " " << get<3>( arg ); }#define DEFINITION_OF_COUT_FOR_VECTOR( V ) template <class Traits , typename Arg> inline basic_ostream<char,Traits>& operator<<( basic_ostream<char,Traits>& os , const V<Arg>& arg ) { auto begin = arg.begin() , end = arg.end(); auto itr = begin; while( itr != end ){ ( itr == begin ? os : os<< " " ) << *itr; itr++; } return os; }DEFINITION_OF_COUT_FOR_VECTOR( vector );DEFINITION_OF_COUT_FOR_VECTOR( list );DEFINITION_OF_COUT_FOR_VECTOR( set );DEFINITION_OF_COUT_FOR_VECTOR( unordered_set );inline void VariadicResize( const int& size ) {}template <typename Arg , typename... ARGS> inline void VariadicResize( const int& size , Arg& arg , ARGS&... args ) { arg.resize( size );VariadicResize( size , args... ); }template <class Traits> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicCin( basic_istream<char,Traits>& is , Arg& arg ,ARGS&... args ) { return VariadicCin( is >> arg , args... ); }template <class Traits> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int& i ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicSet( basic_istream<char,Traits>& is , const int&i , Arg& arg , ARGS&... args ) { return VariadicSet( is >> arg[i] , i , args... ); }template <class Traits> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , const char& separator ) { return is; }template <class Traits , typename Arg , typename... ARGS> inline basic_istream<char,Traits>& VariadicGetline( basic_istream<char,Traits>& is , constchar& separator , Arg& arg , ARGS&... args ) { return VariadicGetline( getline( is , arg , separator ) , separator , args... ); }template <class Traits , typename Arg> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg& arg ) { return os<< arg; }template <class Traits , typename Arg1 , typename Arg2 , typename... ARGS> inline basic_ostream<char,Traits>& VariadicCout( basic_ostream<char,Traits>& os , const Arg1& arg1 , const Arg2& arg2 , const ARGS&... args ) { return VariadicCout( os << arg1 << " " , arg2 , args... ); }// デバッグ用#ifdef DEBUGinline void AlertAbort( int n ) { CERR("abort関数が呼ばれました。assertマクロのメッセージが出力されていない場合はオーバーフローの有無を確認をしてください。" ); }#endif#define INCLUDE_LIBRARY#include __FILE__#endif // INCLUDE_LIBRARY#endif // INCLUDE_MAIN