結果

問題 No.2505 matriX cOnstRuction
ユーザー torisasami4torisasami4
提出日時 2023-09-06 23:10:24
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,733 ms / 2,500 ms
コード長 7,248 bytes
コンパイル時間 3,175 ms
コンパイル使用メモリ 251,040 KB
実行使用メモリ 174,464 KB
最終ジャッジ日時 2024-09-15 14:09:55
合計ジャッジ時間 26,567 ms
ジャッジサーバーID
(参考情報)
judge5 / judge6
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 62 ms
5,376 KB
testcase_02 AC 51 ms
5,376 KB
testcase_03 AC 50 ms
5,376 KB
testcase_04 AC 50 ms
5,376 KB
testcase_05 AC 51 ms
5,376 KB
testcase_06 AC 59 ms
5,376 KB
testcase_07 AC 29 ms
5,376 KB
testcase_08 AC 29 ms
5,376 KB
testcase_09 AC 30 ms
5,376 KB
testcase_10 AC 29 ms
5,376 KB
testcase_11 AC 29 ms
5,376 KB
testcase_12 AC 29 ms
5,376 KB
testcase_13 AC 30 ms
5,376 KB
testcase_14 AC 30 ms
5,376 KB
testcase_15 AC 30 ms
5,376 KB
testcase_16 AC 29 ms
5,376 KB
testcase_17 AC 30 ms
5,376 KB
testcase_18 AC 29 ms
5,376 KB
testcase_19 AC 29 ms
5,376 KB
testcase_20 AC 29 ms
5,376 KB
testcase_21 AC 29 ms
5,376 KB
testcase_22 AC 29 ms
5,376 KB
testcase_23 AC 29 ms
5,376 KB
testcase_24 AC 28 ms
5,376 KB
testcase_25 AC 29 ms
5,376 KB
testcase_26 AC 28 ms
5,376 KB
testcase_27 AC 29 ms
5,376 KB
testcase_28 AC 29 ms
5,376 KB
testcase_29 AC 29 ms
5,376 KB
testcase_30 AC 33 ms
5,376 KB
testcase_31 AC 32 ms
5,376 KB
testcase_32 AC 30 ms
5,376 KB
testcase_33 AC 33 ms
5,376 KB
testcase_34 AC 53 ms
10,368 KB
testcase_35 AC 27 ms
11,904 KB
testcase_36 AC 52 ms
10,368 KB
testcase_37 AC 45 ms
11,904 KB
testcase_38 AC 77 ms
21,120 KB
testcase_39 AC 247 ms
42,840 KB
testcase_40 AC 70 ms
19,840 KB
testcase_41 AC 1,712 ms
170,196 KB
testcase_42 AC 80 ms
21,632 KB
testcase_43 AC 1,571 ms
174,464 KB
testcase_44 AC 1,733 ms
170,192 KB
testcase_45 AC 1,596 ms
174,080 KB
testcase_46 AC 1,715 ms
170,188 KB
testcase_47 AC 1,589 ms
174,336 KB
testcase_48 AC 1,144 ms
101,968 KB
testcase_49 AC 1,678 ms
173,780 KB
testcase_50 AC 1,686 ms
173,776 KB
testcase_51 AC 1,126 ms
5,376 KB
testcase_52 AC 1,119 ms
105,984 KB
testcase_53 AC 1,185 ms
101,840 KB
testcase_54 AC 1,114 ms
105,984 KB
testcase_55 AC 61 ms
5,632 KB
testcase_56 AC 55 ms
5,504 KB
testcase_57 AC 57 ms
5,376 KB
testcase_58 AC 68 ms
9,348 KB
testcase_59 AC 82 ms
10,712 KB
testcase_60 AC 92 ms
12,544 KB
testcase_61 AC 56 ms
5,504 KB
testcase_62 AC 54 ms
5,376 KB
testcase_63 AC 33 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #define _GLIBCXX_DEBUG
#pragma GCC optimize("O2,no-stack-protector,unroll-loops,fast-math")
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < int(n); i++)
#define per(i, n) for (int i = (n)-1; 0 <= i; i--)
#define rep2(i, l, r) for (int i = (l); i < int(r); i++)
#define per2(i, l, r) for (int i = (r)-1; int(l) <= i; i--)
#define each(e, v) for (auto& e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
template <typename T> void print(const vector<T>& v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}
using ll = long long;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
template <typename T> bool chmax(T& x, const T& y) {
    return (x < y) ? (x = y, true) : false;
}
template <typename T> bool chmin(T& x, const T& y) {
    return (x > y) ? (x = y, true) : false;
}
template <class T>
using minheap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <class T> using maxheap = std::priority_queue<T>;
template <typename T> int lb(const vector<T>& v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> int ub(const vector<T>& v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T> void rearrange(vector<T>& v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

// __int128_t gcd(__int128_t a, __int128_t b) {
//     if (a == 0)
//         return b;
//     if (b == 0)
//         return a;
//     __int128_t cnt = a % b;
//     while (cnt != 0) {
//         a = b;
//         b = cnt;
//         cnt = a % b;
//     }
//     return b;
// }

long long extGCD(long long a, long long b, long long& x, long long& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    long long d = extGCD(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

struct Union_Find_Tree {
    vector<int> data;
    const int n;
    int cnt;
 
    Union_Find_Tree(int n) : data(n, -1), n(n), cnt(n) {}
 
    int root(int x) {
        if (data[x] < 0) return x;
        return data[x] = root(data[x]);
    }
 
    int operator[](int i) { return root(i); }
 
    bool unite(int x, int y) {
        x = root(x), y = root(y);
        if (x == y) return false;
        if (data[x] > data[y]) swap(x, y);
        data[x] += data[y], data[y] = x;
        cnt--;
        return true;
    }
 
    int size(int x) { return -data[root(x)]; }
 
    int count() { return cnt; };
 
    bool same(int x, int y) { return root(x) == root(y); }
 
    void clear() {
        cnt = n;
        fill(begin(data), end(data), -1);
    }
};

template <int mod> struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int& operator+=(const Mod_Int& p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator-=(const Mod_Int& p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int& operator*=(const Mod_Int& p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int& operator/=(const Mod_Int& p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int& operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int& operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int& p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int& p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int& p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int& p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int& p) const { return x == p.x; }

    bool operator!=(const Mod_Int& p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream& operator<<(ostream& os, const Mod_Int& p) {
        return os << p.x;
    }

    friend istream& operator>>(istream& is, Mod_Int& p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

ll mpow2(ll x, ll n, ll mod) {
    ll ans = 1;
    x %= mod;
    while (n != 0) {
        if (n & 1) ans = ans * x % mod;
        x = x * x % mod;
        n = n >> 1;
    }
    ans %= mod;
    return ans;
}

template <typename T> T modinv(T a, const T& m) {
    T b = m, u = 1, v = 0;
    while (b > 0) {
        T t = a / b;
        swap(a -= t * b, b);
        swap(u -= t * v, v);
    }
    return u >= 0 ? u % m : (m - (-u) % m) % m;
}

ll divide_int(ll a, ll b) {
    if (b < 0) a = -a, b = -b;
    return (a >= 0 ? a / b : (a - b + 1) / b);
}

// const int MOD = 1000000007;
const int MOD = 998244353;
using mint = Mod_Int<MOD>;

mint mpow(mint x, ll n) {
    bool rev = n < 0;
    n = abs(n);
    mint ans = 1;
    while (n != 0) {
        if (n & 1) ans *= x;
        x *= x;
        n = n >> 1;
    }
    return (rev ? ans.inverse() : ans);
}

// ----- library -------
// ----- library -------

int main() {
    ios::sync_with_stdio(false);
    std::cin.tie(nullptr);
    cout << fixed << setprecision(15);

    int T;
    cin >> T;
    while (T--) {
        int n, m;
        cin >> n >> m;
        vector<int> r(n + m);
        rep(i, n) cin >> r[i];
        rep(i, m) cin >> r[n + i];
        vector<vector<int>> a(n, vector<int>(m));
        rep(i, n) rep(j, m) cin >> a[i][j];
        vector b(n, vector(m, vector<int>(30)));
        rep(i, n) rep(j, m) rep(k, 30) b[i][j][k] = a[i][j] >> k & 1;
        bool ok = true;
        rep(i, n) rep(j, m) if ((a[0][0] ^ a[0][j] ^ a[i][0] ^ a[i][j]) != 0) ok = false;
        if (!ok) {
            cout << -1 << endl;
            continue;
        }
        vector<int> fl(n + m, 0);
        rep(i, n) rep(k, 30) fl[i] |= (b[i][0][k] ^ b[0][0][k]) << k;
        rep(i, m) rep(k, 30) fl[n + i] |= b[0][i][k] << k;
        vector<map<int, ll>> dp(31);
        rep(k, 30) {
            rep(i, n + m) {
                if ((1 << k) > r[i])
                    dp[k][((fl[i] >> (k + 1)) << 1) | !(fl[i] >> k & 1)] += 1e9;
                else {
                    dp[k][((fl[i] >> (k + 1)) << 1) | !(fl[i] >> k & 1)]++;
                    if (!(r[i] >> k & 1))
                        dp[k][(((fl[i] ^ r[i]) >> (k + 1)) << 1) | !(fl[i] >> k & 1)]++;
                }
            }
            for (auto [key, val] : dp[k])
                dp[k + 1][key >> 1] = min(val, dp[k][key ^ 1]);
        }
        ll ans = dp[30][0];
        cout << (ans > 1e8 ? -1 : ans) << endl;
    }
}
0