結果

問題 No.2435 Order All Company
ユーザー stoqstoq
提出日時 2023-09-12 06:54:25
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,758 bytes
コンパイル時間 4,938 ms
コンパイル使用メモリ 280,484 KB
実行使用メモリ 16,344 KB
最終ジャッジ日時 2024-06-29 19:53:47
合計ジャッジ時間 8,452 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 31 ms
14,976 KB
testcase_01 AC 30 ms
14,976 KB
testcase_02 AC 30 ms
14,848 KB
testcase_03 AC 31 ms
14,976 KB
testcase_04 AC 30 ms
15,080 KB
testcase_05 AC 64 ms
16,128 KB
testcase_06 AC 64 ms
16,000 KB
testcase_07 AC 52 ms
15,360 KB
testcase_08 AC 66 ms
16,148 KB
testcase_09 AC 63 ms
16,136 KB
testcase_10 AC 33 ms
14,976 KB
testcase_11 WA -
testcase_12 AC 32 ms
15,036 KB
testcase_13 AC 31 ms
15,104 KB
testcase_14 AC 51 ms
16,056 KB
testcase_15 AC 56 ms
16,056 KB
testcase_16 WA -
testcase_17 AC 65 ms
16,048 KB
testcase_18 WA -
testcase_19 AC 43 ms
16,052 KB
testcase_20 AC 45 ms
15,968 KB
testcase_21 AC 47 ms
16,344 KB
testcase_22 AC 52 ms
15,924 KB
testcase_23 AC 39 ms
15,672 KB
testcase_24 AC 46 ms
15,928 KB
testcase_25 AC 52 ms
16,056 KB
testcase_26 WA -
testcase_27 AC 51 ms
16,052 KB
testcase_28 AC 48 ms
16,176 KB
testcase_29 WA -
testcase_30 AC 49 ms
16,048 KB
testcase_31 WA -
testcase_32 AC 31 ms
14,976 KB
testcase_33 WA -
testcase_34 AC 32 ms
14,976 KB
testcase_35 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define MOD_TYPE 2

#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
// #include <atcoder/lazysegtree>
// #include <atcoder/modint>
// #include <atcoder/segtree>
using namespace atcoder;
#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template <typename T>
using extset =
    tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#pragma region Macros
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif
using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
const double PI = acos(-1.0);
constexpr ld EPS = 1e-10;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define RREP(i, m, n) for (ll i = n - 1; i >= m; i--)
#define rrep(i, n) RREP(i, 0, n)
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())
struct io_init {
  io_init() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << setprecision(20) << setiosflags(ios::fixed);
  };
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
inline ll floor(ll a, ll b) {
  if (b < 0) a *= -1, b *= -1;
  if (a >= 0) return a / b;
  return -((-a + b - 1) / b);
}
inline ll ceil(ll a, ll b) { return floor(a + b - 1, b); }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
  fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
  vector<T> val = v;
  sort(all(val)), val.erase(unique(all(val)), val.end());
  for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
  return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
  is >> p.first >> p.second;
  return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
  os << p.first << " " << p.second;
  return os;
}
ostream &operator<<(ostream &os, mint m) {
  os << m.val();
  return os;
}
ostream &operator<<(ostream &os, modint m) {
  os << m.val();
  return os;
}
template <typename T>
constexpr istream &operator>>(istream &is, vector<T> &v) noexcept {
  for (int i = 0; i < v.size(); i++) is >> v[i];
  return is;
}
template <typename T>
constexpr ostream &operator<<(ostream &os, vector<T> &v) noexcept {
  for (int i = 0; i < v.size(); i++)
    os << v[i] << (i + 1 == v.size() ? "" : " ");
  return os;
}
template <typename T>
constexpr void operator--(vector<T> &v, int) noexcept {
  for (int i = 0; i < v.size(); i++) v[i]--;
}
random_device seed_gen;
mt19937_64 engine(seed_gen());
inline ll randInt(ll l, ll r) { return engine() % (r - l + 1) + l; }
struct BiCoef {
  vector<mint> fact_, inv_, finv_;
  BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
    fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
    for (int i = 2; i < n; i++) {
      fact_[i] = fact_[i - 1] * i;
      inv_[i] = -inv_[MOD % i] * (MOD / i);
      finv_[i] = finv_[i - 1] * inv_[i];
    }
  }
  mint C(ll n, ll k) const noexcept {
    if (n < k || n < 0 || k < 0) return 0;
    return fact_[n] * finv_[k] * finv_[n - k];
  }
  mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
  mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
  mint Ch1(ll n, ll k) const noexcept {
    if (n < 0 || k < 0) return 0;
    mint res = 0;
    for (int i = 0; i < n; i++)
      res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
    return res;
  }
  mint fact(ll n) const noexcept {
    if (n < 0) return 0;
    return fact_[n];
  }
  mint inv(ll n) const noexcept {
    if (n < 0) return 0;
    return inv_[n];
  }
  mint finv(ll n) const noexcept {
    if (n < 0) return 0;
    return finv_[n];
  }
};
BiCoef bc(1000010);
#pragma endregion

// -------------------------------

template <class T>
struct Matrix {
  vector<vector<T>> A;

  Matrix() {}

  Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}

  Matrix(size_t n) : A(n, vector<T>(n, 0)){};

  size_t height() const { return (A.size()); }

  size_t width() const { return (A[0].size()); }

  inline const vector<T> &operator[](int k) const { return (A.at(k)); }

  inline vector<T> &operator[](int k) { return (A.at(k)); }

  static Matrix I(size_t n) {
    Matrix mat(n);
    for (int i = 0; i < n; i++) mat[i][i] = 1;
    return (mat);
  }

  Matrix &operator+=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
    return (*this);
  }

  Matrix &operator-=(const Matrix &B) {
    size_t n = height(), m = width();
    assert(n == B.height() && m == B.width());
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
    return (*this);
  }

  Matrix &operator*=(const Matrix &B) {
    size_t n = height(), m = B.width(), p = width();
    assert(p == B.height());
    vector<vector<T>> C(n, vector<T>(m, 0));
    for (int i = 0; i < n; i++)
      for (int j = 0; j < m; j++)
        for (int k = 0; k < p; k++)
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
    A.swap(C);
    return (*this);
  }

  Matrix &operator^=(long long k) {
    Matrix B = Matrix::I(height());
    while (k > 0) {
      if (k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return (*this);
  }

  Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }

  Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }

  Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }

  Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }

  friend ostream &operator<<(ostream &os, Matrix &p) {
    size_t n = p.height(), m = p.width();
    for (int i = 0; i < n; i++) {
      os << "[";
      for (int j = 0; j < m; j++) {
        os << p[i][j] << (j + 1 == m ? "]\n" : ",");
      }
    }
    return (os);
  }

  T determinant() {
    Matrix B(*this);
    assert(width() == height());
    T ret = 1;
    for (int i = 0; i < width(); i++) {
      int idx = -1;
      for (int j = i; j < width(); j++) {
        if (B[j][i] != 0) idx = j;
      }
      if (idx == -1) return (0);
      if (i != idx) {
        ret *= -1;
        swap(B[i], B[idx]);
      }
      ret *= B[i][i];
      T vv = B[i][i];
      for (int j = 0; j < width(); j++) {
        B[i][j] /= vv;
      }
      for (int j = i + 1; j < width(); j++) {
        T a = B[j][i];
        for (int k = 0; k < width(); k++) {
          B[j][k] -= B[i][k] * a;
        }
      }
    }
    return (ret);
  }
};

void solve() {
  int n, k;
  cin >> n >> k;
  vector<vector<pii>> E(k);
  rep(i, k) {
    int t;
    cin >> t;
    rep(j, t) {
      int a, b;
      cin >> a >> b;
      a--, b--;
      if (a > b) swap(a, b);
      E[i].push_back({a, b});
    }
  }
  mint ans = 0;
  rep(msk, 1 << k) {
    vector<vector<mint>> M(n, vector<mint>(n));
    rep(x, k) {
      if (((1 << x) & msk) == 0) continue;
      for (auto [a, b] : E[x]) {
        M[a][a]++;
        M[b][b]++;
        M[a][b]--;
        M[b][a]--;
      }
    }
    rep(i, n) M[i].pop_back();
    M.pop_back();
    Matrix<mint> D;
    D.A = M;
    mint cnt = D.determinant();
    if (__builtin_popcount(msk) & 1)
      ans += cnt;
    else
      ans -= cnt;
  }
  cout << ans << "\n";
}

int main() { solve(); }
0