結果

問題 No.2435 Order All Company
ユーザー stoq
提出日時 2023-09-12 07:03:24
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 69 ms / 2,000 ms
コード長 8,768 bytes
コンパイル時間 4,845 ms
コンパイル使用メモリ 270,844 KB
最終ジャッジ日時 2025-02-16 21:49:39
ジャッジサーバーID
(参考情報)
judge5 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 36
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define MOD_TYPE 2
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/all>
// #include <atcoder/lazysegtree>
// #include <atcoder/modint>
// #include <atcoder/segtree>
using namespace atcoder;
#if 0
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/multiprecision/cpp_int.hpp>
using Int = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
#endif
#if 0
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tag_and_trait.hpp>
#include <ext/pb_ds/tree_policy.hpp>
#include <ext/rope>
using namespace __gnu_pbds;
using namespace __gnu_cxx;
template <typename T>
using extset =
tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;
#endif
#if 1
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#endif
#pragma region Macros
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
#if MOD_TYPE == 1
constexpr ll MOD = ll(1e9 + 7);
#else
#if MOD_TYPE == 2
constexpr ll MOD = 998244353;
#else
constexpr ll MOD = 1000003;
#endif
#endif
using mint = static_modint<MOD>;
constexpr int INF = (int)1e9 + 10;
constexpr ll LINF = (ll)4e18;
const double PI = acos(-1.0);
constexpr ld EPS = 1e-10;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define RREP(i, m, n) for (ll i = n - 1; i >= m; i--)
#define rrep(i, n) RREP(i, 0, n)
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
#define UNIQUE(v) v.erase(unique(all(v)), v.end())
struct io_init {
io_init() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << setprecision(20) << setiosflags(ios::fixed);
};
} io_init;
template <typename T>
inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
inline ll floor(ll a, ll b) {
if (b < 0) a *= -1, b *= -1;
if (a >= 0) return a / b;
return -((-a + b - 1) / b);
}
inline ll ceil(ll a, ll b) { return floor(a + b - 1, b); }
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val) {
fill((T *)array, (T *)(array + N), val);
}
template <typename T>
vector<T> compress(vector<T> &v) {
vector<T> val = v;
sort(all(val)), val.erase(unique(all(val)), val.end());
for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin();
return val;
}
template <typename T, typename U>
constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept {
is >> p.first >> p.second;
return is;
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept {
os << p.first << " " << p.second;
return os;
}
ostream &operator<<(ostream &os, mint m) {
os << m.val();
return os;
}
ostream &operator<<(ostream &os, modint m) {
os << m.val();
return os;
}
template <typename T>
constexpr istream &operator>>(istream &is, vector<T> &v) noexcept {
for (int i = 0; i < v.size(); i++) is >> v[i];
return is;
}
template <typename T>
constexpr ostream &operator<<(ostream &os, vector<T> &v) noexcept {
for (int i = 0; i < v.size(); i++)
os << v[i] << (i + 1 == v.size() ? "" : " ");
return os;
}
template <typename T>
constexpr void operator--(vector<T> &v, int) noexcept {
for (int i = 0; i < v.size(); i++) v[i]--;
}
random_device seed_gen;
mt19937_64 engine(seed_gen());
inline ll randInt(ll l, ll r) { return engine() % (r - l + 1) + l; }
struct BiCoef {
vector<mint> fact_, inv_, finv_;
BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) {
fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1);
for (int i = 2; i < n; i++) {
fact_[i] = fact_[i - 1] * i;
inv_[i] = -inv_[MOD % i] * (MOD / i);
finv_[i] = finv_[i - 1] * inv_[i];
}
}
mint C(ll n, ll k) const noexcept {
if (n < k || n < 0 || k < 0) return 0;
return fact_[n] * finv_[k] * finv_[n - k];
}
mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; }
mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); }
mint Ch1(ll n, ll k) const noexcept {
if (n < 0 || k < 0) return 0;
mint res = 0;
for (int i = 0; i < n; i++)
res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1);
return res;
}
mint fact(ll n) const noexcept {
if (n < 0) return 0;
return fact_[n];
}
mint inv(ll n) const noexcept {
if (n < 0) return 0;
return inv_[n];
}
mint finv(ll n) const noexcept {
if (n < 0) return 0;
return finv_[n];
}
};
BiCoef bc(1000010);
#pragma endregion
// -------------------------------
template <class T>
struct Matrix {
vector<vector<T>> A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {}
Matrix(size_t n) : A(n, vector<T>(n, 0)){};
size_t height() const { return (A.size()); }
size_t width() const { return (A[0].size()); }
inline const vector<T> &operator[](int k) const { return (A.at(k)); }
inline vector<T> &operator[](int k) { return (A.at(k)); }
static Matrix I(size_t n) {
Matrix mat(n);
for (int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];
return (*this);
}
Matrix &operator-=(const Matrix &B) {
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B) {
size_t n = height(), m = B.width(), p = width();
assert(p == B.height());
vector<vector<T>> C(n, vector<T>(m, 0));
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
for (int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(height());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend ostream &operator<<(ostream &os, Matrix &p) {
size_t n = p.height(), m = p.width();
for (int i = 0; i < n; i++) {
os << "[";
for (int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant() {
Matrix B(*this);
assert(width() == height());
T ret = 1;
for (int i = 0; i < width(); i++) {
int idx = -1;
for (int j = i; j < width(); j++) {
if (B[j][i] != 0) idx = j;
}
if (idx == -1) return (0);
if (i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for (int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for (int j = i + 1; j < width(); j++) {
T a = B[j][i];
for (int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
void solve() {
int n, k;
cin >> n >> k;
vector<vector<pii>> E(k);
rep(i, k) {
int t;
cin >> t;
rep(j, t) {
int a, b;
cin >> a >> b;
a--, b--;
if (a > b) swap(a, b);
E[i].push_back({a, b});
}
}
mint ans = 0;
rep(msk, 1 << k) {
vector<vector<mint>> M(n, vector<mint>(n));
rep(x, k) {
if (((1 << x) & msk) == 0) continue;
for (auto [a, b] : E[x]) {
M[a][a]++;
M[b][b]++;
M[a][b]--;
M[b][a]--;
}
}
rep(i, n) M[i].pop_back();
M.pop_back();
Matrix<mint> D;
D.A = M;
mint cnt = D.determinant();
if ((k - __builtin_popcount(msk) + 1) & 1)
ans += cnt;
else
ans -= cnt;
}
cout << ans << "\n";
}
int main() { solve(); }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0