結果
問題 | No.2435 Order All Company |
ユーザー | stoq |
提出日時 | 2023-09-12 07:03:24 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 56 ms / 2,000 ms |
コード長 | 8,768 bytes |
コンパイル時間 | 4,850 ms |
コンパイル使用メモリ | 282,776 KB |
実行使用メモリ | 16,348 KB |
最終ジャッジ日時 | 2024-06-29 20:02:27 |
合計ジャッジ時間 | 6,602 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 25 ms
14,768 KB |
testcase_01 | AC | 24 ms
14,992 KB |
testcase_02 | AC | 24 ms
14,912 KB |
testcase_03 | AC | 26 ms
14,940 KB |
testcase_04 | AC | 26 ms
14,916 KB |
testcase_05 | AC | 56 ms
16,064 KB |
testcase_06 | AC | 56 ms
15,984 KB |
testcase_07 | AC | 45 ms
15,388 KB |
testcase_08 | AC | 55 ms
16,024 KB |
testcase_09 | AC | 55 ms
16,260 KB |
testcase_10 | AC | 28 ms
14,932 KB |
testcase_11 | AC | 26 ms
14,992 KB |
testcase_12 | AC | 25 ms
15,012 KB |
testcase_13 | AC | 28 ms
15,000 KB |
testcase_14 | AC | 45 ms
16,180 KB |
testcase_15 | AC | 47 ms
16,180 KB |
testcase_16 | AC | 39 ms
16,244 KB |
testcase_17 | AC | 55 ms
16,180 KB |
testcase_18 | AC | 38 ms
15,900 KB |
testcase_19 | AC | 36 ms
16,176 KB |
testcase_20 | AC | 38 ms
16,184 KB |
testcase_21 | AC | 40 ms
16,348 KB |
testcase_22 | AC | 44 ms
16,048 KB |
testcase_23 | AC | 33 ms
15,572 KB |
testcase_24 | AC | 41 ms
15,920 KB |
testcase_25 | AC | 44 ms
16,176 KB |
testcase_26 | AC | 42 ms
16,104 KB |
testcase_27 | AC | 44 ms
16,052 KB |
testcase_28 | AC | 38 ms
16,180 KB |
testcase_29 | AC | 41 ms
16,048 KB |
testcase_30 | AC | 41 ms
16,052 KB |
testcase_31 | AC | 26 ms
14,976 KB |
testcase_32 | AC | 26 ms
15,000 KB |
testcase_33 | AC | 26 ms
14,968 KB |
testcase_34 | AC | 26 ms
14,920 KB |
testcase_35 | AC | 27 ms
14,996 KB |
ソースコード
#define MOD_TYPE 2 #include <bits/stdc++.h> using namespace std; #include <atcoder/all> // #include <atcoder/lazysegtree> // #include <atcoder/modint> // #include <atcoder/segtree> using namespace atcoder; #if 0 #include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/cpp_int.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 0 #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tag_and_trait.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> using namespace __gnu_pbds; using namespace __gnu_cxx; template <typename T> using extset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #pragma region Macros using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 1000003; #endif #endif using mint = static_modint<MOD>; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; const double PI = acos(-1.0); constexpr ld EPS = 1e-10; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define RREP(i, m, n) for (ll i = n - 1; i >= m; i--) #define rrep(i, n) RREP(i, 0, n) #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; #define UNIQUE(v) v.erase(unique(all(v)), v.end()) struct io_init { io_init() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(20) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll floor(ll a, ll b) { if (b < 0) a *= -1, b *= -1; if (a >= 0) return a / b; return -((-a + b - 1) / b); } inline ll ceil(ll a, ll b) { return floor(a + b - 1, b); } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T> vector<T> compress(vector<T> &v) { vector<T> val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } ostream &operator<<(ostream &os, modint m) { os << m.val(); return os; } template <typename T> constexpr istream &operator>>(istream &is, vector<T> &v) noexcept { for (int i = 0; i < v.size(); i++) is >> v[i]; return is; } template <typename T> constexpr ostream &operator<<(ostream &os, vector<T> &v) noexcept { for (int i = 0; i < v.size(); i++) os << v[i] << (i + 1 == v.size() ? "" : " "); return os; } template <typename T> constexpr void operator--(vector<T> &v, int) noexcept { for (int i = 0; i < v.size(); i++) v[i]--; } random_device seed_gen; mt19937_64 engine(seed_gen()); inline ll randInt(ll l, ll r) { return engine() % (r - l + 1) + l; } struct BiCoef { vector<mint> fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(1000010); #pragma endregion // ------------------------------- template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)){}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; void solve() { int n, k; cin >> n >> k; vector<vector<pii>> E(k); rep(i, k) { int t; cin >> t; rep(j, t) { int a, b; cin >> a >> b; a--, b--; if (a > b) swap(a, b); E[i].push_back({a, b}); } } mint ans = 0; rep(msk, 1 << k) { vector<vector<mint>> M(n, vector<mint>(n)); rep(x, k) { if (((1 << x) & msk) == 0) continue; for (auto [a, b] : E[x]) { M[a][a]++; M[b][b]++; M[a][b]--; M[b][a]--; } } rep(i, n) M[i].pop_back(); M.pop_back(); Matrix<mint> D; D.A = M; mint cnt = D.determinant(); if ((k - __builtin_popcount(msk) + 1) & 1) ans += cnt; else ans -= cnt; } cout << ans << "\n"; } int main() { solve(); }