結果
問題 | No.924 紲星 |
ユーザー | kuhaku |
提出日時 | 2023-09-13 22:58:16 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 469 ms / 4,000 ms |
コード長 | 18,225 bytes |
コンパイル時間 | 4,170 ms |
コンパイル使用メモリ | 248,972 KB |
実行使用メモリ | 27,640 KB |
最終ジャッジ日時 | 2024-07-01 07:10:08 |
合計ジャッジ時間 | 10,852 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 3 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 3 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 466 ms
27,532 KB |
testcase_09 | AC | 459 ms
27,640 KB |
testcase_10 | AC | 457 ms
27,500 KB |
testcase_11 | AC | 469 ms
27,572 KB |
testcase_12 | AC | 448 ms
27,500 KB |
testcase_13 | AC | 184 ms
13,652 KB |
testcase_14 | AC | 162 ms
11,792 KB |
testcase_15 | AC | 162 ms
12,200 KB |
testcase_16 | AC | 215 ms
19,272 KB |
testcase_17 | AC | 258 ms
16,196 KB |
testcase_18 | AC | 2 ms
6,944 KB |
ソースコード
#line 1 "a.cpp" #define PROBLEM "https://yukicoder.me/problems/no/924" #line 2 "/home/kuhaku/atcoder/github/algo/lib/template/template.hpp" #pragma GCC target("sse4.2,avx2,bmi2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> template <class T, class U> bool chmax(T &a, const U &b) { return a < (T)b ? a = (T)b, true : false; } template <class T, class U> bool chmin(T &a, const U &b) { return (T)b < a ? a = (T)b, true : false; } constexpr std::int64_t INF = 1000000000000000003; constexpr int Inf = 1000000003; constexpr int MOD = 1000000007; constexpr int MOD_N = 998244353; constexpr double EPS = 1e-7; constexpr double PI = M_PI; #line 3 "/home/kuhaku/atcoder/github/algo/lib/algorithm/compress.hpp" /** * @brief 座標圧縮 * * @tparam T 要素の型 */ template <class T> struct coordinate_compression { coordinate_compression() = default; coordinate_compression(const std::vector<T> &_data) : data(_data) { build(); } const T &operator[](int i) const { return data[i]; } T &operator[](int i) { return data[i]; } void add(T x) { data.emplace_back(x); } void build() { std::sort(std::begin(data), std::end(data)); data.erase(std::unique(std::begin(data), std::end(data)), std::end(data)); } void build(const std::vector<T> &v) { data = v; std::sort(std::begin(data), std::end(data)); data.erase(std::unique(std::begin(data), std::end(data)), std::end(data)); } bool exists(T x) const { auto it = std::lower_bound(std::begin(data), std::end(data), x); return it != std::end(data) && *it == x; } int get(T x) const { auto it = std::lower_bound(std::begin(data), std::end(data), x); return std::distance(std::begin(data), it); } int size() const { return std::size(data); } private: std::vector<T> data; }; /** * @brief 座標圧縮 * * @tparam T 要素の型 * @param v * @return std::vector<T> */ template <class T> std::vector<T> compress(const std::vector<T> &v) { coordinate_compression cps(v); std::vector<T> res; for (auto &&x : v) res.emplace_back(cps.get(x)); return res; } #line 2 "/home/kuhaku/atcoder/github/algo/lib/binary_tree/fenwick_tree.hpp" /** * @brief フェニック木 * @see http://hos.ac/slides/20140319_bit.pdf * * @tparam T */ template <class T> struct fenwick_tree { fenwick_tree() : _size(), data() {} fenwick_tree(int n) : _size(n + 1), data(n + 1) {} fenwick_tree(const std::vector<T> &v) : _size((int)v.size() + 1), data((int)v.size() + 1) { this->build(v); } template <class U> fenwick_tree(const std::vector<U> &v) : _size((int)v.size() + 1), data((int)v.size() + 1) { this->build(v); } T operator[](int i) const { return this->sum(i + 1) - this->sum(i); } T at(int k) const { return this->operator[](k); } T get(int k) const { return this->operator[](k); } template <class U> void build(const std::vector<U> &v) { for (int i = 0, n = v.size(); i < n; ++i) this->add(i, v[i]); } /** * @brief v[k] = val * * @param k index of array * @param val new value * @return void */ void update(int k, T val) { this->add(k, val - this->at(k)); } /** * @brief v[k] += val * * @param k index of array * @param val new value * @return void */ void add(int k, T val) { assert(0 <= k && k < this->_size); for (++k; k < this->_size; k += k & -k) this->data[k] += val; } /** * @brief chmax(v[k], val) * * @param k index of array * @param val new value * @return bool */ bool chmax(int k, T val) { if (this->at(k) >= val) return false; this->update(k, val); return true; } /** * @brief chmin(v[k], val) * * @param k index of value * @param val new value * @return bool */ bool chmin(int k, T val) { if (this->at(k) <= val) return false; this->update(k, val); return true; } /** * @brief v[0] + ... + v[n - 1] * * @return T */ T all_sum() const { return this->sum(this->_size); } /** * @brief v[0] + ... + v[k - 1] * * @param k index of array * @return T */ T sum(int k) const { assert(0 <= k && k <= this->_size); T res = 0; for (; k > 0; k -= k & -k) res += this->data[k]; return res; } /** * @brief v[a] + ... + v[b - 1] * * @param a first index of array * @param b last index of array * @return T */ T sum(int a, int b) const { return a < b ? this->sum(b) - this->sum(a) : 0; } /** * @brief binary search on fenwick_tree * * @param val target value * @return int */ int lower_bound(T val) const { if (val <= 0) return 0; int k = 1; while (k < this->_size) k <<= 1; int res = 0; for (; k > 0; k >>= 1) { if (res + k < this->_size && this->data[res + k] < val) val -= this->data[res += k]; } return res; } private: int _size; std::vector<T> data; }; #line 2 "/home/kuhaku/atcoder/github/algo/lib/data_structure/bit_vector.hpp" /** * @brief 完備辞書 * * @see https://ei1333.github.io/library/structure/wavelet/succinct-indexable-dictionary.hpp */ struct bit_vector { bit_vector() = default; bit_vector(unsigned int _length) : length(_length), blocks((_length + 31) >> 5), bit((_length + 31) >> 5), sum((_length + 31) >> 5) {} void set(unsigned int k) { bit[k >> 5] |= 1U << (k & 31); } void build() { sum[0] = 0U; for (unsigned int i = 1; i < blocks; ++i) { sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]); } } bool operator[](unsigned int k) const { return bit[k >> 5] >> (k & 31) & 1; } unsigned int rank(unsigned int k) const { return sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1)); } unsigned int rank(bool val, unsigned int k) const { return val ? rank(k) : k - rank(k); } unsigned int select(unsigned int k) const { unsigned int sl = 0, sr = blocks + 1; while (sr - sl > 1) { unsigned int m = (sl + sr) >> 1; if (sum[m] < k) sl = m; else sr = m; } k -= sum[sl]; unsigned int bl = 0, br = 32; while (br - bl > 1) { unsigned int m = (bl + br) >> 1; if (__builtin_popcount(bit[sl] & ((1U << m) - 1)) < k) bl = m; else br = m; } return (sl << 5) + bl; } private: unsigned int length, blocks; std::vector<unsigned int> bit, sum; }; #line 3 "/home/kuhaku/atcoder/github/algo/lib/data_structure/wavelet_matrix.hpp" /** * @brief ウェーブレット行列 * * @tparam T * @tparam L * * @see https://ei1333.github.io/library/structure/wavelet/wavelet-matrix.cpp.html */ template <class T, int L = 20> struct wavelet_matrix { wavelet_matrix() = default; wavelet_matrix(std::vector<T> v) : length(v.size()) { std::vector<T> l(length), r(length); for (int level = L - 1; level >= 0; --level) { matrix[level] = bit_vector(length + 1); int left = 0, right = 0; for (int i = 0; i < length; ++i) { if (v[i] >> level & 1) { matrix[level].set(i); r[right++] = v[i]; } else { l[left++] = v[i]; } } mid[level] = left; matrix[level].build(); v.swap(l); for (int i = 0; i < right; ++i) { v[left + i] = r[i]; } } } T access(int k) const { T res = 0; for (int level = L - 1; level >= 0; --level) { bool f = matrix[level][k]; if (f) res |= T(1) << level; k = matrix[level].rank(f, k) + mid[level] * f; } return res; } T operator[](int k) const { return access(k); } /** * @brief count i s.t. (0 <= i < r) && v[i] == x * * @param x * @param r * @return int */ int rank(int r, T x) const { int l = 0; for (int level = L - 1; level >= 0; --level) { std::tie(l, r) = succ((x >> level) & 1, l, r, level); } return r - l; } /** * @brief count i s.t. (l <= i < r) && v[i] == x * * @param l * @param r * @param x * @return int */ int rank(int l, int r, T x) const { return rank(r, x) - rank(l, x); } /** * @brief k-th smallest number in v[l ... r-1] * * @param l * @param r * @param k * @return T */ T kth_smallest(int l, int r, int k) const { assert(0 <= k && k < r - l); T res = 0; for (int level = L - 1; level >= 0; --level) { int cnt = matrix[level].rank(false, r) - matrix[level].rank(false, l); bool f = cnt <= k; if (f) { res |= T(1) << level; k -= cnt; } std::tie(l, r) = succ(f, l, r, level); } return res; } /** * @brief k-th largest number in v[l ... r-1] * * @param l * @param r * @param k * @return T */ T kth_largest(int l, int r, int k) const { return kth_smallest(l, r, r - l - k - 1); } /** * @brief count i s.t. (l <= i < r) && (v[i] < upper) * * @param l * @param r * @param upper * @return int */ int range_freq(int l, int r, T upper) const { int res = 0; for (int level = L - 1; level >= 0; --level) { bool f = ((upper >> level) & 1); if (f) res += matrix[level].rank(false, r) - matrix[level].rank(false, l); std::tie(l, r) = succ(f, l, r, level); } return res; } /** * @brief count i s.t. (l <= i < r) && (lower <= v[i] < upper) * * @param l * @param r * @param lower * @param upper * @return int */ int range_freq(int l, int r, T lower, T upper) const { return range_freq(l, r, upper) - range_freq(l, r, lower); } /** * @brief max v[i] s.t. (l <= i < r) && (v[i] < upper) * * @param l * @param r * @param upper * @return T */ T prev_value(int l, int r, T upper) const { int cnt = range_freq(l, r, upper); return cnt == 0 ? T(-1) : kth_smallest(l, r, cnt - 1); } /** * @brief min v[i] s.t. (l <= i < r) && (lower <= v[i]) * * @param l * @param r * @param lower * @return T */ T next_value(int l, int r, T lower) const { int cnt = range_freq(l, r, lower); return cnt == r - l ? T(-1) : kth_smallest(l, r, cnt); } private: int length; bit_vector matrix[L]; int mid[L]; std::pair<int, int> succ(bool f, int l, int r, int level) const { return {matrix[level].rank(f, l) + mid[level] * f, matrix[level].rank(f, r) + mid[level] * f}; } }; #line 4 "/home/kuhaku/atcoder/github/algo/lib/data_structure/compressed_wavelet_matrix.hpp" /** * @brief ウェーブレット行列 * * @tparam T * @tparam L * * @see https://ei1333.github.io/library/structure/wavelet/wavelet-matrix.cpp.html */ template <class T, int L = 20> struct compressed_wavelet_matrix { compressed_wavelet_matrix() = default; compressed_wavelet_matrix(const std::vector<T> &v) : cps(v) { int n = v.size(); std::vector<int> t(n); for (int i = 0; i < n; ++i) t[i] = cps.get(v[i]); mat = wavelet_matrix<int, L>(t); } T access(int k) const { return cps[mat.access(k)]; } T operator[](int k) const { return access(k); } /** * @brief count i s.t. (0 <= i < r) && v[i] == x * * @param x * @param r * @return int */ int rank(int r, T x) const { auto pos = cps.get(x); if (pos == cps.size() || cps[pos] != x) return 0; return mat.rank(r, pos); } /** * @brief count i s.t. (l <= i < r) && v[i] == x * * @param l * @param r * @param x * @return int */ int rank(int l, int r, T x) const { return rank(r, x) - rank(l, x); } /** * @brief k-th smallest number in v[l ... r-1] * * @param l * @param r * @param k * @return T */ T kth_smallest(int l, int r, int k) const { return cps[mat.kth_smallest(l, r, k)]; } /** * @brief k-th largest number in v[l ... r-1] * * @param l * @param r * @param k * @return T */ T kth_largest(int l, int r, int k) const { return cps[mat.kth_largest(l, r, k)]; } /** * @brief count i s.t. (l <= i < r) && (v[i] < upper) * * @param l * @param r * @param upper * @return int */ int range_freq(int l, int r, T upper) const { return mat.range_freq(l, r, cps.get(upper)); } /** * @brief count i s.t. (l <= i < r) && (lower <= v[i] < upper) * * @param l * @param r * @param lower * @param upper * @return int */ int range_freq(int l, int r, T lower, T upper) const { return mat.range_freq(l, r, cps.get(lower), cps.get(upper)); } /** * @brief max v[i] s.t. (l <= i < r) && (v[i] < upper) * * @param l * @param r * @param upper * @return T */ T prev_value(int l, int r, T upper) const { auto res = mat.prev_value(l, r, cps.get(upper)); return res == -1 ? T(-1) : cps[res]; } /** * @brief min v[i] s.t. (l <= i < r) && (lower <= v[i]) * * @param l * @param r * @param lower * @return T */ T next_value(int l, int r, T lower) const { auto res = mat.next_value(l, r, cps.get(lower)); return res == -1 ? T(-1) : cps[res]; } private: wavelet_matrix<int, L> mat; coordinate_compression<T> cps; }; #line 3 "/home/kuhaku/atcoder/github/algo/lib/template/macro.hpp" #define FOR(i, m, n) for (int i = (m); i < int(n); ++i) #define FORR(i, m, n) for (int i = (m)-1; i >= int(n); --i) #define FORL(i, m, n) for (int64_t i = (m); i < int64_t(n); ++i) #define rep(i, n) FOR (i, 0, n) #define repn(i, n) FOR (i, 1, n + 1) #define repr(i, n) FORR (i, n, 0) #define repnr(i, n) FORR (i, n + 1, 1) #define all(s) (s).begin(), (s).end() #line 3 "/home/kuhaku/atcoder/github/algo/lib/template/sonic.hpp" struct Sonic { Sonic() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); } constexpr void operator()() const {} } sonic; #line 5 "/home/kuhaku/atcoder/github/algo/lib/template/atcoder.hpp" using namespace std; using ll = std::int64_t; using ld = long double; template <class T, class U> std::istream &operator>>(std::istream &is, std::pair<T, U> &p) { return is >> p.first >> p.second; } template <class T> std::istream &operator>>(std::istream &is, std::vector<T> &v) { for (T &i : v) is >> i; return is; } template <class T, class U> std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) { return os << '(' << p.first << ',' << p.second << ')'; } template <class T> std::ostream &operator<<(std::ostream &os, const std::vector<T> &v) { for (auto it = v.begin(); it != v.end(); ++it) { os << (it == v.begin() ? "" : " ") << *it; } return os; } template <class Head, class... Tail> void co(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cout << head << '\n'; else std::cout << head << ' ', co(std::forward<Tail>(tail)...); } template <class Head, class... Tail> void ce(Head &&head, Tail &&...tail) { if constexpr (sizeof...(tail) == 0) std::cerr << head << '\n'; else std::cerr << head << ' ', ce(std::forward<Tail>(tail)...); } template <typename T, typename... Args> auto make_vector(T x, int arg, Args... args) { if constexpr (sizeof...(args) == 0) return std::vector<T>(arg, x); else return std::vector(arg, make_vector<T>(x, args...)); } void setp(int n) { std::cout << std::fixed << std::setprecision(n); } void Yes(bool is_correct = true) { std::cout << (is_correct ? "Yes" : "No") << '\n'; } void No(bool is_not_correct = true) { Yes(!is_not_correct); } void YES(bool is_correct = true) { std::cout << (is_correct ? "YES" : "NO") << '\n'; } void NO(bool is_not_correct = true) { YES(!is_not_correct); } void Takahashi(bool is_correct = true) { std::cout << (is_correct ? "Takahashi" : "Aoki") << '\n'; } void Aoki(bool is_not_correct = true) { Takahashi(!is_not_correct); } #line 6 "a.cpp" int main(void) { int n, q; cin >> n >> q; vector<ll> a(n); cin >> a; vector<pair<int, int>> b(q); cin >> b; compressed_wavelet_matrix wm(a); coordinate_compression cc(a); int m = cc.size(); auto c = compress(a); vector<int> ok(q); rep (i, q) { ok[i] = wm.kth_smallest(b[i].first - 1, b[i].second, (b[i].second - b[i].first + 1) / 2); } vector<vector<int>> query(n + 1); rep (i, q) { auto [l, r] = b[i]; query[l - 1].emplace_back(~i); query[r].emplace_back(i); } vector<ll> ans(q); fenwick_tree<ll> ft1(m), ft2(m); rep (i, n) { ft1.add(c[i], a[i]); ft2.add(c[i], 1); for (auto &&idx : query[i + 1]) { if (idx >= 0) { int t = cc.get(ok[idx]); ans[idx] += ft1.sum(t, m); ans[idx] -= ok[idx] * ft2.sum(t, m); ans[idx] += ok[idx] * ft2.sum(t); ans[idx] -= ft1.sum(t); } else { idx = ~idx; int t = cc.get(ok[idx]); ans[idx] -= ft1.sum(t, m); ans[idx] += ok[idx] * ft2.sum(t, m); ans[idx] -= ok[idx] * ft2.sum(t); ans[idx] += ft1.sum(t); } } } for (auto x : ans) co(x); return 0; }