結果
問題 | No.3024 等式 |
ユーザー | rsk0315 |
提出日時 | 2023-09-14 00:36:42 |
言語 | Rust (1.77.0 + proconio) |
結果 |
TLE
|
実行時間 | - |
コード長 | 34,490 bytes |
コンパイル時間 | 12,167 ms |
コンパイル使用メモリ | 402,656 KB |
実行使用メモリ | 13,888 KB |
最終ジャッジ日時 | 2024-07-01 08:36:22 |
合計ジャッジ時間 | 22,641 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 4 ms
8,864 KB |
testcase_01 | AC | 4 ms
6,944 KB |
testcase_02 | AC | 5 ms
6,940 KB |
testcase_03 | AC | 5 ms
6,940 KB |
testcase_04 | AC | 5 ms
6,940 KB |
testcase_05 | AC | 4 ms
6,940 KB |
testcase_06 | AC | 20 ms
6,940 KB |
testcase_07 | AC | 22 ms
6,940 KB |
testcase_08 | AC | 28 ms
6,944 KB |
testcase_09 | AC | 5 ms
6,940 KB |
testcase_10 | AC | 5 ms
6,944 KB |
testcase_11 | AC | 5 ms
6,944 KB |
testcase_12 | AC | 962 ms
6,940 KB |
testcase_13 | AC | 959 ms
6,940 KB |
testcase_14 | AC | 1,200 ms
6,944 KB |
testcase_15 | AC | 6 ms
6,944 KB |
testcase_16 | AC | 4 ms
6,940 KB |
testcase_17 | AC | 53 ms
6,940 KB |
testcase_18 | AC | 6 ms
6,940 KB |
testcase_19 | AC | 7 ms
6,940 KB |
testcase_20 | AC | 4 ms
6,940 KB |
testcase_21 | AC | 6 ms
6,940 KB |
testcase_22 | TLE | - |
ソースコード
// This code is generated by [rsk0315/cargo-atcoder](https://github.com/rsk0315/cargo-atcoder) forked from [tanakh/cargo-atcoder](https://github.com/tanakh/cargo-atcoder). // Original source code: const _: &str = r#" use std::collections::HashSet; use itertools::Itertools; use proconio::input; use nekolib::math::{ModInt998244353, ModIntBase}; type Mi = ModInt998244353; fn main() { input! { n: usize, a: [i64; n], } let res = a.iter().permutations(n).any(|p| { let a: Vec<_> = p.iter().map(|&&ai| ai).collect(); solve(&a) }); println!("{}", if res { "YES" } else { "NO" }); } fn solve(a: &[i64]) -> bool { let n = a.len(); let mut dp = vec![vec![HashSet::<Mi>::new(); n + 1]; n + 1]; for i in 0..n { dp[i][i + 1].insert(Mi::new(a[i])); } for w in 2..=n { for l in 0..=n - w { let r = l + w; let mut tmp = HashSet::new(); for m in l + 1..r { for &kl in &dp[l][m] { for &kr in &dp[m][r] { if kl == kr { return true; } tmp.insert(kl + kr); tmp.insert(kl - kr); tmp.insert(kl * kr); if kr.get() != 0 { tmp.insert(kl / kr); } } } } dp[l][r] = tmp; } } false } "#; fn main() { let exe = std::env::temp_dir().join("binD968A28E"); std::io::Write::write_all(&mut std::fs::File::create(&exe).unwrap(), &decode(BIN)).unwrap(); #[cfg(unix)] fn executable(exe: &std::path::Path) { std::fs::set_permissions(exe, std::os::unix::fs::PermissionsExt::from_mode(0o755)).unwrap(); } #[cfg(not(unix))] fn executable(_: &std::path::Path) {} executable(&exe); std::process::exit(std::process::Command::new(&exe).status().unwrap().code().unwrap()) } fn decode(v: &str) -> Vec<u8> { let mut ret = vec![]; let mut buf = 0; let mut tbl = vec![64; 256]; for i in 0..64 { tbl[TBL[i] as usize] = i as u8; } for (i, c) in v.bytes().filter_map(|c| { let c = tbl[c as usize]; if c < 64 { Some(c) } else { None } }).enumerate() { match i % 4 { 0 => buf = c << 2, 1 => { ret.push(buf | c >> 4); buf = c << 4; } 2 => { ret.push(buf | c >> 2); buf = c << 6; } 3 => ret.push(buf | c), _ => unreachable!(), } } ret } const TBL: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; const BIN: &str = " f0VMRgIBAQAAAAAAAAAAAAMAPgABAAAAcBUBAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAOAADAAAA AAAAAAEAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAABowQAAAAAAAAAQAAAAAAAA AQAAAAUAAAAAAAAAAAAAAADQAAAAAAAAANAAAAAAAABXWQAAAAAAAFdZAAAAAAAAABAAAAAAAABR5XRk BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAJDLkU9VUFgh 8BMOFgAAAAD4uAAAdngAAOACAACvAAAADgAAABoDAD+RRYRoPYmm2orhgzJO2QPwjw/AXWTclZSPEF17 a5AdMyF+50aKjN0LIduEzrXIW4FqZFjz4+C4ZLtgJJTBMZn0ntVTitECnubznt6H2vBsO8SwQAt6c4/u IVnnQGNXMIW5kqpwEBf6OG4MrsZmMguTQ58lDhp3Rqdnvy4aM9jQgQEDmYz4wl6mpiDGRnjSao4eHrAR TziUz+3wnRRsqgzmqXSYsZ8u7dHOEbRQDwAAagMAAA4AAAAaAwAXmwkmM3GmCYALHTJPNRq/liYhnSgP FX2WO3CstB0TYQRuPnDn/eIVCsd0PzwJH8GA1GCNQvmdxbUR6qjDdlZv4UMhq5w1Kg76FnUkCAHf1Bsf kgEtINUvK/Tb++21BnWGdAvBQ87ENY2C7yFslDwBExIQwJnVV+gN1OEqqSHmVL3zdswxc8bf0SSiQZl8 BFkAPMIAowieoo973Igm4DV4ljROUbpgSfyHXjCy6BKcEM9lFHsoqVteTDBEf7tXCuFl0P5g6FPJf1V8 +Nc9sgeaIzMGu+NPd+tmmZTCCt/aS63NmpWK/lT9W1LNpgxKzWOnxyeaoDGal6KWPp2Lq9Ayc+Il3/Jr ES/HF4aLieWDEQEbZ4Bf3oYnJpr0ysZd3+Qedd1zp6v212ek9KOaeJBQF0bPMR7iLJQioyFCfIAAAFkK iQo2ORU9LQJsrKdb8TF586N1b6eqiuowBKBdDfH7lf7Lf0qo1wCcRkA91RC51OQH3xpPZNBSXm9gbeko mM6cpnbJCsyKQfvICagkZSkfKGD0GNBQMG09lfJOja96tiEgSStLnerDOAgZI5xPtMM0sbHJDJLv52Ah AvgeVZpAV8rEOiM0cZnKaM6RdUQymeI/XFbR2u9Y/tV4rjD4Ul2AypSS5WCKLPG7FHmxz2IfT5XeEbKv PzokFAp5+c68LFspP9SsXxf6OW4qU2YmlK9AE6vKhZB9mfD+1/Uz7m/TQrIJahHrxpdDyTbotUePR3hu hc5MAdSL4pMiARBfTk11SzGIY3L+DUQgN5Xa+bf3Se3FTiiKOBnZiSGJt8Sch0JnkOPxWkBs0krr5b/j ZvexXFvNqkgb2+0LNo2NiuKOMCu6L0bu9istz3Q0yhGHf43YU6LC1DRnAg+9+u0IgLR+aTP4/IGTCTmn 8lQ01arnl59q/UpxWUhWhzuZI59Lajpa61EazsGHUFmgjE8iasaYhwwylUtQPbiCZlDQqNt4Tg7GoF24 2WFAlI+6LQPkFN2tzTxgydUv6DriWPgIPK+6RJrNew6WqRTo2r4Et/kFjbQudWG173FkjP8R591+0Zqm NBYANGja3w/c8oLj0ZXOlg1RdJ+DLVwXmB9yYPVueIV+SGfbJJo1fNqKcr1saINpiKOp9vqJL9cuLk7Z oSsVJi1wcRk+dngAAK87AAAOSQQAGgMAJCDZgIJasTzXjwoUovyI2rCHRpCd21yK42MAy7rnkG757xUy 1wvPXoGL6RRAo/X2eiCmorEndcPkF0yMgVeaFuBSJ0KEFH9c3zsT69PCgvBJ3bkKAw2bt/2FwWa410W5 36lTLMok+QGb+npJ2ZckfPeQiTfoez2I5fEdPQMxROE37eKNmPiee8tPZAGpzeQrfz6aqd2eAL0cKJu+ Mi4UQUTYzGvAhGitXtn13Lc6rTSo7dacc5SUEWsgrnTswOuxiJIyij1uqM27sNMMjp4OMRx5bem7crrR NrOsnVtI7YMayAIxVIgjFWQlahmotNUlIt+5wmeiaYdb3wslU9JdnyZiipIMX/9+m1r1iOv9beLHnOwy o+7008CBJau35g/jceJm1Fm8/0gnp+VCJzP58dZb2gNJW5Qn0QMZQjm8Fp2AQ7xPaLH8qOneP3UtW4x7 5tZzqRUZ6SA5mQUYVjJgAscm3gm302owOpmthEcobPJXN1V0i2hLgx2fs289OdcG9kDDnGmjS0Bm2VdL +PkxW7pnUdeVRkEpAnRksVGBBL021ybnV6OJ1kfFG2OF6z7qm/X5IVj3UJmQNhjjhGk4WtGtYRN9EQLu Fyr4P7smQTQGDqXfWBo+i1EPiNEtmkgNYCHT7xL4YsedmLlRpJkEYWOrF4pTau40Yum9irwHm+DaAdZf TtxCGY98mGDapHQRNniSZny+XWXeqYGJmHkxJyYeLhcz8wfewyU89ZD3B+wcbfEWGHUkRLd4G/cmgRiw 4D4kS96KUWfG/RG2yilC4MyAjebEKKKzhXPUHXsjWA/ZhQv/gLmvNZIPkE5JIkXvXtH459SCuUy2n5BB 0A8PMd7nBlId9o+VoBEpkDpNhUQFLYjvLJEcBDfbl5CG5R83D2Jr4SomarjICPV078d3ASgfL9c+Du3s weSiH53pOVs2oEgt8tHacB1Lwy5r+79ua8+WsVuopcbIf+V/Fu6mv9UHLgOe9m9ZuykL8R3fHKRrkueS kcMCA3GzQOSxDYNOduCknvoCrZzpShdTRqD72M/RzBLTaR1IR7PlnsN5rosVpY3IcxnkDzhzX0zg3R+6 WzdiGEG23o2UOl80N8w5gphLmzBF79T6MxW3cCE9pTgmxv3L+9RSdBP//gDef8F1r0TXWAHylgDg4ytP PmgB04LWO6lK8qkBKqRpd3KBNiH0vN21jhYcvRr9UALoIBdbyTmK8QZ9R3lpFkS266+pG67KCB2qkEFY LWw0gc6UC7r0TEAVyrtkzHfLAUgZabpAKbN6HrJruLQahe4YHrGANY9yLPhadXNQ9laFlZCuFqybG6fS L1Dq1B4L6vl/+Ohr4LZwlBytyxcuDmA/IYhNcQ9SHJe1DRtIxFJ2I3v8JOC74T3YjlEEdZ5EeAxZP8Pg kE5mOYmD02QvDSnqXYLXC5QR7j12x+YVhLBMMshNCKERuAtQfvcZ3mJe+WR/xVIPmg6dEZqU6+CrEbsx eKbHhcVTQlcjBZOaIYbzldGk2SLs0byujYrGTjSjwN4FyqWKhiF35ADtAB2TAPmIaNDHrYLty72kBQWD T6gGO0JysVTKQMuSAZPGI3eJBZowVJVmmYmPkY5mksvDg/NHzy8VPVUWOG9qc21A1FE5fHX5qyN3SLNE EeVXlr5VYNQmYpRjNGrKJ3H14euQ5hfFl5cScOgRcb59WQoMJt/QoO3wnv1LEWtN53TzDcTPIx+bjX4N S5ez1G8qenpO2EjQczuyZx65FdNiRdiiEYnsW2cCM8QFZsVdpI/J2joMMwjv7Cbpy+xFMGvRTAbrznlZ q4a13ccNhOyLZRuKRDmuisjQG0Sk1f8nQTh6NK9f1CgYIkeB3BVdD3/5VBsqRFLDHNZm0t2CW2EiJuUG 2UXm/YfMVinQPJzQ8gxXKXKwMh5f8qOOHF1WNXqlA1qf+k+CFJD0LkWEE0U360UqD9zzwxu6eYvKj5Oe Qio0GBq79nZNWoFQttAD6Rf7tWXfEnVLLEk3Lpbo1jo7Cq54YPP7THueVyQHehLoMUSf3b3hQVjIXtKe xzcWdBxoe5mYz9hEIDkZioSkXBu9KzD9Nvyb8hmrzMctjSS+aTrmni2c/pb8e1QkHL9EI75O4T0O9VpB b1meTBLc01WwxDv2Jq78vO9xwd+iiDqrFCLgvqXJn40uUxyWi7QXE97GvDihBoAEK9gm8+mA94wDJc0R ZmNYgR7U+bHL/pApmwMMTFVKOjVYm7kOiGi9aSo+e8Is55XBhP8hl/pDNWGJNr6C8P1s2QqESaVrjaxe RzNnNKrQxOKKHOmwbhT1I8zdtCEjhZkX0gHL84J5BIq/vBQRZ8+sGMkLhcyzuoyOxI8c20Tbh8wFHmvw QCbI+HpayZ3Va1evYN6qEZa9fRiaBHhG1at1DhdVjJlYE5PMQ/YHADl2gK7YYgCNC/QkkXYsundmEPIc Va2Rv8T/hFpUFhMp1ZlPVPQpEYPY2emEPYi5BKb662FcVctUtqkGFtptdFaF7vIfLbxUqrh81D8QiRc6 gEniOSA/iDYsX5r2RVC/IO9r3RQaAIMwY7CeC4kfGxbMzRmLaVzGEYKSpTiKQa4EGOiU5NohEQk2Rcnq m2Ogc6ydqZhyCA3/8aB4S1Km9dhhfiy/iRwHDJV8pr3fQlNR/bACHuWagsTz5aVASEZtY2waJysEOrdd M7qTsueV9KiEP6HNBtfGddD0UTbxilqtTOGmGFR9gfGQm18sMy6glJ8JIAhJsg9hpyJYvPpW1Umu0hu9 p5oSqdkwQIWXh6XhR0flClkNiqsiy1LZecLCJ8vxS7UnIJY195nHYPs60FsVZV1+KU1aOUZcuwZ8DaGz t7AUNECvyowtqDD20of0/GkHWy/OGS+SIZy0uQqVQt462MbSeS2riWSliTZI6IIs9AY5vBABLcOmV2pn 2Wxnx96BeRovwBuk2sn1S17Gmqd8qD2PrD1NNhpvr+UEDkpuy3BDK2Ju5t7zo6EpZ6S3IQdlpFN7ZhAV 79ZKVGUQ0XiJgh0jQzFmizpH5c/8YiwOst+Uks5flza6oRtL6/2Vz37H6ehrDMc6SjyUBV+d8hBlT3/n Tc83Z4n6VHfccI2z9IDEUSNZ8dhCgAAjoms1oXurLuokd42CguPd6qhLCmYO6xg63XjfgyLifXF4j9Xw ao70pySY2EgBMgFecTlv1TFrV/+l3921uXK5lLidoX6agWkD0G1HYO1h5opaUHNMuz0dIgjiQ2LG7fCR 9K8tz+2wW4728FtT9rRFmLAYrGJNF1CFyxzf8l1MaVLiceVjDmj2jJpy0GTezZCgcitxg2h7IndIbWzY Vj4MxFYsfjym7N0aAW+6fbCOIVL2ff9ct1PONeaBU/Ld5DKZziSaZqErfmYJBk+BkNsSxephE0/kfmbN 5tmafywPHvGPIt+MJ/ZdCzdPrdOHqcOXBFMZ9r4l7adjPZkWCFdij0xjdgKI3/kAzkSHKgSsRNZvRAeQ WN+xmHa3TDBGuIWt2Mq8KjcwZne6bs+Ccf4lw2Py8IamEWGbnODFMZeedOMMd885VxzHzZER87YEGBAr z3wL/y05fxOQ+jvm00CwhTWDn5x44OP9QaPGG40JWuS2LtaI4eWZ3LimSe6jgCZ++WwvJH9/acXIM+/h N4hhFlXtA9gIz5P/knqC7zrXLskTcrGigFPpnEyB4/g8bBOmE4x5OmvsJbukLOvbe9whu0sulDuCYmef iugyr7fzf5ySsUsg8BpRn7hIRrSp3ThwAfwoHUQ791SgSorr/zsi7R+w4fNDvJszgmKwVvKCMGARIN/m zJT6NElH/+dVP+Tj9UD/bwVSTQ+2K7cUa0Xsc+7dGAl2mb4QNj1UuxwuhiYBHFZwXkM6xWkKpPvmcIVZ ygr1XTs0fElyEC71TyzsLVprwHXSe9kj4BAxe5S7rhdgjTHvqVuNNTXoq4n6GfYQaoUVLg1zEPdXEiII +KIONd8emw6QxYxLT+qVyPRQArFuksdOJe4IXZ5co9rKjjyfSS/fWvabiXJ6zXoWEn7LWMQesNnoxcB8 GudDkIABDGkEiVd/k6vZVZOUWldfVbECCzfJfr2u0yN0wJk9/R77yKQa9aaiFFqZl6OO5lr8V8Mk9oz4 95TrOSD+Ir2sqnhSQEZm9o9hKuTWat/hbGfL/TVYmFlK465E0XwbcLmdw95jBEoup90IZXTDkFUY3iGO 8KqxsJgre+SjvQ+Bd7v/Yi9RZaof7m/dyLq7y1OOtOm73n2Wxuati++rwUIzGMt6l4klowW2lBhQScwc VxdQhAtDmYUQdgHysoz6fu7wOG9SwaKhIwGm0HPm606tYv0UpR5BINvFlSoaXOoVK/VbMEOJ0uEaCWZu JoT1exICGI2UXsQMmUhvjkSziAVjBhijXDkEdVx8trGzPlosyvYsKYB2RbN8CWzZVWRwusYMliPmyABd kx4xW8of08Cw9QmnBkbJdT6B2XAqDlVpJITBw7nFwEafC/3RdLtU9QLdZNQamLcMKDyvl/WTN2GQkHbm ptaEOrz4F4Z+1gSO/ud8GF62CQDk9K8OJSHEuJ6k3w3MyEd55yc5ZeyT1P3Ne66lQj5CFOVW9HHhML6u V2TtwVwxnFaWCMUC+aIIlODtQgTWjsHOB8uJz7eySTb+CuLxTad8/tf77xDLMQr1R+ftvS1XHWzYaLZG NeSr0QnaDxPMm0lqOyU0R0OOScSOfD3BzqNmydJOQOnDNqWlBBAntO31qXsLZzsahTeaXUL0M4SKMak3 LqQVOc16lAdUJqSSelqCksy+yDZ+MnFqFYFfkLh4TfvN3PE74BY5hg06KRbrngm5wVPT6zPhc8re8I23 Qf9nmxkE93goGpdcn+7boEuRCR94NwhJG11bbTIvrMZGnpfF5/OUADrXBr0HZqWugawrNtsZ/b/YMliW a1qdDCTcOsVseaWOeHiQpHvTLDtvVDXAOCPNXvuOnf+V+UsMcdRLcHHqSFz60gjCeZxHUB2ds9g77v8Y GjXLkivuZnai8GLdIpEK74llAoFi8glZjd+KBskXROkjl8Kgq3sGw+0r+gfjqBKR4POsl+mcZclV15lg BQMPg3eFPp0CJiwothIqqK+5IKIzhVBgvcxJR3JgXygs9dxf4sO0plCgNgpXzX0gzx/JEqmQBClhyle6 cwN/QFiXyubhbBaqVMmulvoBIefKjuXpQnWn6ojGEgeZL9m5a0gXyVPiPpBjYYqemNWMat0D7Yjv/hxB Xus3XHxSDS3xifJkgpwH2CW2eyQxd7yLQYLY1HZ0n+xy9vm2d+vdT+kn3XEEQrB9635/CRuVqEaUvNiQ ojJAkrhpK20xlgcwm+v1Z3OdvH2y3jYDc+NY3T8twRfddDAof9DvQ3A6w7lGF6H/wiWI11ytZSYphSD0 sZLrNTGdKCPV+FPNl84pyI6s+PHF65QqhPTbfis9DCtPRP9dDY5DlGe6Sk3xi8tNZqbt0yL+ZXWI6UwB 4GeVJFG8bsff89y941r/A+T3dbZUIcQRJB0x94rF99Z3DFOcn2MKT+AJP0zxCEDflMc8mr7WtqCij3Da ti2a0zreJHNNlUIlBC/OzidnPX0Tz9dTURQ5R32+DEt9qceOnhjKWiw0bz+35J8QQoUs3r7NkmAzwGAy 3mvh8uRX9BpUhjvXAZhjSpY3v/87HepKcXLMKFA82O6TCARQEzbHDAa8hEe+nLUZp9DNpYQjZh9tvbLm P4QI6uE8e0tu83AWiYMeVtr7R8typ2gtmvOJGd301+wNx51Z8k7tb/Mgznflb1YEz0ylUAvsniCPqglU wLcif33gvf3ijyTN0kL6IyQVNPeSeOAel3DG1f+P1pvXohs6wm3AlymbK93yaZwwcrGjf6RlXLz0NCJu cDAxUujxVjAxQplZ9WsoRWgkZVD9q47ww9osk9FA8zkfpu+z6sxHCMODu+BIkZi56sF4DfluNlEehvoD fFuTa4z7nMf6dx0pXhiTtAzMTKswKYIfZZBaXRmorrOjygMIdNmy7D6EkKzepaqCk6ZysQNjFa15jOaI Bd4TgSTM/tV48KWLE3a0yHW5de6AB6qGhtWEYRMYzJzWFM6MqNgyoyGyUQZaESPNV0VGJ48Bv9/mUQo+ kSSRSWwe/BBJ5F71hZ/QiyAk1B6P9ETKJOnVZi3tO4p4vFGhXTbVMeTznH4SYLUUp502dqpPWx2DZpp5 NM3+xnu+B2uD+FWRAH2EOx5MZfg7RG2UeCguwvNDXymHtdKpjzCGB23F6JHc+Rs1PnbPmX/XVfcJrsNt +5zo2fxiPsreqxZR+EdkeoQrdyyEgDzn5EXsGpUHqtHK2JW9OrHZ3eumYrCtKxIzSC84sP0DHPZjHsWD vDijhgNjdBvnTQckn7hnT667GWE9+ltJ01XyY86vnXCb874AKWC/QLA94UuDFt9PHE7tb++xkjTJTbos byZoo/HiRwYZh7pQwG+zkKBvFzO6QsLgemg4r+WfqNI2wabxyXluxQduuADOm769P4pSgFzVKGwt1m5w Oq4aWac4tzdxlLaiE1z2nK+ZBaA2romzKHiZQdjYMPNnTfDCaDmtdIIeXfhrlJq9cLhgzYKnBdiw9OhE 2UdunAOIGmhExIhtOZqD757jqvhkAmAXZvps2hfyX0pFIfPzCoQ77vaKtsEZACyUnX6gjxz2EEifLmy0 2NBXicfTaKm0Fa+aFJTncDao7Wcz9JXzWpaETAFb7lRp9S1LNHW/sFGJjTtmgA3ozty9SqBwcCaUfCpm NGBH5OZFGPayVr2pGEx5Ez6nkW6t+kWLbISwGD42tCIODhFsBxAMwWIcWFwSNLNCpI4c0dmk1/gqMhhg XZUiVWNz9g6Jp52++pWRnOo0RXirBxAApChm/UbEKUeReB2KpigJzZl9/DNeOy/yV6Z7JWemyvOjE19p 9AgoR5xOJIjSt1+Nh0030i9bNfbENL5TCVmfIwBkVhnzEzr6J77uLAzyD3yk9OpC1f3FSoLuAfgFIseq u5Yy62gEg6X9qHBEEMJl45eYde4sVpTLX7GHe8jkm6/wpLnpe5V0Ul70OoRfgTdabuwI+62ElXGMFVQ9 xqoFDazJradmwidDdBEXsFzk909mHQ0sNqWIlClVsGBizYCWtafOoNkJG5razuXwnM78dZez7M3EJER5 X3N118GqjNFJPwfCx8wuVY56OGFwgYh8RJLAHuvbLnfplvKtvXEYnbzq3MHsvV2GCRSljMShTROrahLL 2+wkdjtBMeXZhPJsZTlrMl269OEnCVWtpCn7nrKhvLpmlLqWGjQA5Nw+yQK4n3n8Qrr+SlFCwR9KDR+e zX35zOu0R11vM9oegnT8KG0dZdrp/9f6WEb0eb7qRfIabqhu5n8yF5516RuXCTvCdMomqlIRIDhsT1N4 i+gxXydZkXD2O7dvXg7wfgE+b9xR6vsan62sLEqdKOSZwgNBqi+D5D/fZSNu60mw/mY/5tXDu1yankzl WUpG3WKA4PZfzsMcFZbYIErECgkheeFT4q/iaZ8Vzgn2vJfwLgTWqWzhAnGXg7oiWeJSdhZlVmB7v+aE VoYQIzdzvth4SwlNyL1gIPcGor2LMzjOR21uTWFb5oWv2LyUJFclT3TYPY0iHuhckN+0e8kM39GJzA3e E2U4DupTYmi6vcihxmsQ7C08PRTaasiVHSU00w8akj60quZwF8acc+Hnh0lFO1sv1a11TsL+CIZ0xKow LNbDuLEepTZsJTIB+eJP4tXE+/7XuAz1Woxz9123ar2ysNDOoplqsfmvmXC8l4W7PTrLeKB0mGKTNI/f +yjaUmqz9CvclhnWo5a9FnadxHdUXnUR6beJ01KGBsg5tjquP9j6x1xoN1xLakMyOnUSjDK+bYF94W8u o1MZHqAP1STwHl79y+m0NnrnfZfkGd5HEP7/8ZqgZcqPGEwuXR/AXYKG3rkkbQ2+q2UQUtdPQu1MI4uK /Of4HZM90oQ4DTmEoi4MdWYbWJsU7fHGBKyAimtDbJ3axGsJHvq9YEvVN/HBwmMnWAU4CpE1Uyf39kCY MguZ4ZNWPRnboZxuZtvvG8fdbM1VCaLvt7Dz/lc6NzPaxPSpwFqOw6Y9HUv9spmE/SHmYLpgc6z1Tj4X NQ62YnVryLdCBzIXW6+J1zne5d3OrFDOZ5qKnpI41KLHyY26GXI/xLlHDdwn9LfcIVYve9PdK19WYZ/O drZnaIjBhp7+o4asNO08LU9M7eyLMVpJfgwN85GS8Xa0O9x14ebBc2eDApDZu0+7ElHCJ4j0Ik7DILhY f2s2v057b1WNyA8XPE3N2LEzqI/1Us/9yr5AnZVur9tL3UT34rSrb3+BWRlkGRTHrYdQSWX2JgZ9Zu8R bdzI2YtQ0Np5WvYbQiIwVXV36ktLPvqNmO3rANTAQ9pSMjNDcsU66BFym6WFfn5pC/QlIVgyw/M6y0c3 N0CW8m95nxeJqFPfFuAyLiMh1Fse5nvVc9KKx+Yxzknmm48kRnIMi2MQIDEjhfzjfxasI/4ga4tcQIfh ss+Xew1ed99hkxdrIiEum+QTwFjYbtnnsmr5WUUMCR86cuaW5J3T8D25itpp6xfRC4TokAdLierwXUVB 7vD7WdMmrn9qFYPxqEny8kf+73wexOUdi2hg0Zz21caUm5eUxzfx2R3FxfkB8iuVRaoufUa+JCq5D4Ri DbQIe8ghQ1eRGkKWZpjk2W+1Pu7szaMDwMhxwBo8UdHoJEFcRY+BRnIQ3U+qwsvIiyAbMyE1b0hzHA5k oUZWHtiYzJffBsEXCkwPZbQ15SRczgul1K7ZvNqI7fS1zQhmUFUdTkze85bbda8Zb4PCagyZmkX4Z9+1 Nq3prxFNixQ2RPOZDiUvFv0xAbSjyyqUo0dh36nXLW2EzLxUEis5ByPDCLe8qdXySok4cpHMKm61Mh4H eYBRjorW2qoXdkh2Ky4RI9A1jA6M922/+TmboNE/GjoxYy9JV2Qt44kVb3DbrPIjua2YLwdeTpogOOz5 vWNbHZggyOnuFmRUKpDW4qevpmmyuAV+l+3mcOEit7awPXvqTLb1rk+MA4wyEyjx0QUDZlOrhLxvO6yE 2Gbwqy6tJZM2HB498Uubk5mdQQWFXrGMOBLxaSrcKWq5UwvX+T4hHjgFi8ne0+2okimWOSx/g6R+gQN5 Ge33O4aOVcDyEQYXQBBZVxd0WCZrVgQu9XeICdOrBGrWwd2jbOLU6HmBIPuoE1NXYX5nP+jxtRpn3vLi P6GRszi76yCLvbIEEuyG5WFAX/0kcmAekVGAtPw88vMjz/5sFllK1N1epN8iQM/fyNVtrF8gtmTrJ/x/ hMnVLelV4Co0e1Iypz1Qg9/pkROT7CvCO+gTW/QzQWhioMIkAB9BxHms0Jt31FmYZldNE/EANroFE6DJ BzdCDY5VugwFDPfOwmASX063vOpfcnA4JGQ7lEgkB+JLR4cBsUqlV/1pw3E2XcSufjUvaDkACfk5YPHe CCK1cLy8mKVhd6pm+XsVTrFOd6RrvaxJNf0ryaaZ/NwCq78xwHPcmgPbVN1lsrfbxjxbfCd95LGqcYrW 3pWfbDIo5HA5tsFy4I9TTMJ6xHuVMrqtR+J3qiXugcmK1LyYVenJHrjoa4h4QfdbChW1jcLraf8G1wq2 jSeyGjWWCZRXCF14qZioI7WxWo8rp8JlOMnZA6JpXJqhcq/oL3BSxbPjlKxR44NjoEXE9V0Vr4vCboyK SC7xqlwiWYPkYQJyf79nPQyVu+30+o2l1rClYiyzCHxnTA++D6eSGUyvR/OwPg1dNd+0/F66u+657Ihs aM2Qgm+weROWCodQB8d/qoXeYwSITr++pRj/HYzHRx5DQRf/ekXOtBpYptKWQLV6Ye84AMlJj/+b/H1U xtLUQjF4mpSlcOIYsNr7l201YQAJnt0KppjpNZBD4T6wYy/hUsWD8bfFOZiaWxW+6xd+EjiOqKbpOQWi hKLG2VLu0zWRepoTVPPgCh5U1NyMRYrZAqMcMN7nq90/9U8QgS6i4fMXcly8b8PHT2vkH7SAw3E2MLJ2 vffhldnQsKSBOewdjVk8z8aweWWqPWE4zoZ2Rxy3S8SZqnjaCq0YdSAxXJVx2sGG42abF/rZEaOIYX6v 0gOd268MBCjps6gMm6wgH3X6ixihEDacYZPVYrPTW6gSw2M77Og+i9AfxaN2lXvtmFb4xub3ftd/U4Vm Qr+ppDlEhJW94HM9uN45g1J1y73MRGzXmyiEff4X4Qt7SQJfxESY51oNOAEKVnJEe0Upr0EBqC8OA+6F mS5QMTQmMuxYWi+Pa7fjw0NoheByFCvHZ4QoHIzddbEqwTFJKbjDrZU3jIx+/7yHXO2YodNUAJmAzpf0 P3n7gqnyxjPG08sPE/BGg4aJEMoArJhc72tKbGRyCnPjd0s3tkG5GPzmPwJWJ7EqvzGKTholslJGsrHN D7d/FznB0EHf3JY3AzTpWOOkAip2ZYJ0Snda3h1jjXANVglbgnM1I8SKM2xF8ykiNDg82H443JIQ4VH9 NqfwqV7tql7qOsQjQrHqWpvoyR2UajvMvEfQGLiKu+XIGd9IB9BzYtgWQGhUwsS1O3rvV/t6ljfRg5QH ezME+rQlLvAqCNuzSJM2sUMwsS57Ppu+bt0IzBoZw97SEnPS9iYSb4vIeme0woZjcOsRYIrbUqP493W8 bvKEsRHCD/7zOAW5FojYB3/iepaijxg2YTpVPKXRmgLVH6F3WzLpB3GhD8QfeKWgc5KgD0vrWYLqtgww Zsm5/2beNG8Vg0dZ7o2Dh+r4gRgUqhvxAE4gAGhMiAW4uawlpzhqm/wBkr9VJvpgmjSMH9TEXy64ys3X k+CXUSC8PkRiQBD4QSrIzF7RIKh0hv6EK0eN8Tg+fCPdVwtRDbllezSvqUclCcq2ra0aXJVtzuwQ4MOg Wb8Pj6cZqB1nfrQbKUpW1a5anoSSxnwv0yXw5A1bgGj+m2ioqGRwbIQYNHCVCLDc3Hboja726XoLmVoA cw5+oeM4yBD5SZZfmSUYSge/ki8xA9U8FDASLDxEoKu0gORe885w5Ct24nY5bKrdVGfjbSzFUgdTBdHe K2ruRDS70BJKsB46mTCIdz92nVsK9EXKcUOpewqTU7wmT0UelHNoxdJEMj2ldqgm1rriCIuLugwN8V/h WZx6ym/FazIVE6/H71EIIX+p+Y9oTmNoD61T4BERq2fyvCNUDkXwvjRBrEQq4zlPdeurGKxNcHbtL0ay 25xJR4zKzYGlfHD9DijdvuV01rJeWubE7uo4rIWkDDmIJjywFmEROKXqOaVT1H+IoN6kWOlYFWKPVFr+ RVmNeaaZAs71izNuxSCWeIDAFIS8IHEDtvLsw9YaXoVyMrjzPN9zeARBLC0d3YmCtYuafirXTAa19uXH kJQs1lPvphovp2qyiZmTwZLjolI4p7W6JhTJca/ofjhjCpQiSk1Ow8hkOY7oGevjMqIoN0BVQwhy3EZg tnG1NqOZoGvqsL5gfY+w+OgoDmCCVup7z6Qj3wCv4+TrbddLFJs9Ewkf8uLTHziSuDnWQEVA78hYec1s zZAeMKJ6IQvJvMhO/BVJIBkVq/hjyFYEYnh2b29qwDNBHlim+JV1SyP69N44W5mvDQbseRhvRH6xP5ON oR3fQJ1HI1auTIMDCzs8/TXfU+fs7ZhH5haRSUP58rOsDHZ+T09P0l+XqcZkEAnmMWZDC2MJsQ133O+a W3WlFK2q6gJt9qpZJTgQ/doirOZpItmS6HeaNf0HTrt7/Gv8p6R/nwFJd6yBi4L/3g8hIKfPEvfPv0SX vMPoWiUxntzOJrUTGzKKxtEJ5qwuLfvlQw+x1+mps/Js0aKp/zlhcQNT+o6zkP4JYnEI/Hj6TokFGRAW /VQCSaLEXv2eYY77ribGRfjQv3/lXFDDKA7BTHSal4WWdF+PctG19mnmgFiLPreBaMua1m7ZThJtCrWX 7/v0cw/fegkHIOJf8Ez42bVIE5KTJ4AajG8F2XHSNJZWVdty2lKQ0YPw2n7n7jPbgRwRPEdfG38rT4XJ aoC0NkQ8LM+F08V26mHaLgtX0A5iJLRuwHKT3IqlwOhnfpRVSwU3KrpEKkuTYqdQe9zPx2c1LNsGPlFO LVhA3Sby8W/oFU4POEq/ora2amQbdEQjIY+Q6pLGs0IXhl+08ZjHesjuHXGibe52D3G/v+y9qcDDeI4H oVtwkKS5WspG3/08S4RmKOmVEkdltFY/dE+KR2X9h8DgWrK9yuefe2biI878RLNj2p2WfubE3ebb3cvY pnyeaDUAW3dI9hBtRZkGbJduyK+FwCgQUofVLP96eHlhT7a2lkzQERK8qu7in5sC84rXtW1vPqbIX1PH 8qA0XkZfVtKgV2Z5z09YXpGSCW+cNciA+tUY7YxixH4sFoQCgEiOP2HUKZhCdsCtyo0LxZmSaw27Xlw6 pWFdx9dAUqrIkRtjfV8kfSuDBcIplFYSgJCJCBjVtBcpCq2ui6IaPpXJF96425cxjRgSjmSVn0rjY1L8 wTOUFwz152i0Xp8tjUNBfR2vrlB/wZgOVMvVbtekeMf29qUXMXoqg/ezvCWKwAHmM0ZgBzf49UkAmJTp GzgpAtulE50qmKd/mYI4POpvgdRs2JRdHbATx/1QPy0Z+8enACozGmwXyusV9V145EcgSjnuMDV3xF8N d02h5yJKcNNbs/xb/6CvSXGxDvNYKYmYKPkl+d9ySNFUvr9neFXU3fNBfCFPEa/o2T8cKeS9ia10uY2J y7ys0Rwf1Vm1oel/kGYuOZJjcUqiGbzfIV1n64jxtSqcfuva11ZpdqSJQ+FPOmAv0nnte/lcEdycrYH4 qP+9k4BBVHfiHwtDR3rtTj3oTWB3Ew25eGbV8JJOhUaIsuFaQ1H1DbR1pg5/m3SNW+KHMDMvs/SBuNqz JUcDLmuZToKVSFepuCYafR/GflDPuFRTovsbhPxuF+BosE/FAd7Z9jkYncK6ah13+/Z4idp6Yb45FZOW juAoUoyRsDrxeOj7USSZ2UGf47pXKHphi2a+KYa4hPqk7IvsDIbfzIDyM21DYOFPedrNy+JRh8t2t595 OBgm5SWmCMYPdnz7Yc92NdPHnGJTjOeFxIjnLErwatKKGU3uK3TYQDBLCT0kJriuxjkiJcpYH19nqjYL b0ErDdB5C+Sj86kpiKEH+JdSaoFtXE/PARTO+cACNMWwdsKSQdDtXgYBD6kug29GwN7SQ6M0qrASkxSo hYxK1c8swRYv7+iZK+pkjKqaKFfMJAMPMgI80JWYAaBZ9+b2Y87m3EsxgqxOnPIOX3uiptN+H1ps29sp 4QRRr0dtBwxuxcNkZCfHO065lQJVoOKRtW3QQLfCc4RP2R1QoniQ++lA2gKCzbg5cO/oTndOUCNYSz7R 7AlITmulbgaYYZtOFFH/4ocgs4KdXFkj29YP/cNH7jjre7hO7UOIOj8MyONKjF/KLGXWqm99Zi66jWy9 0V1+6JxusOPYJc5ko4vQE2jRfusKcSoWclGYY8VT0K0sUS31ndOiCJpNS7N/iPEfeBOapAyoyUNrr5sz bIOLVcX7VAPl7fBGnUNGKhMjmGAKwAmyaiBIuulQMyMbXRhtxOXE+SYqaD4utou5kdf7bHqmbUbrSc6e +NkkGPyfAEornXwDb8kzmUjNs2l7XnNMqaRGIRB1eK++yKOna6ggGEsozhgau0i0gFqtSw6kIWqRHU8+ JdNtqAl7+IRho0RuxLo6TyEhlo3Y3fBeASkvlCgmndlxgLmcxb84jkq8Q+Dkq9JHCMWYTcka/AlysZn/ eufl2hiKVBr159gFQm9gTr/vTaVQ4xV/C71GK2p1QQN0lzQ/0/59zWVEk/CPoeAj4/MKaYOfPoMUYpg5 XvG54tpER/wuJ9IjoiFIwFCHnQBcKdTvOUiLAQl22OHGPOfzZWV0slWn7OWvrIdm7Lu8Wy8Upvg6xnR2 680OUTvLiHCHTIWDCmumewoekbQEKqKj/zZDc5t+0e96HPp2kKxw7jp4xBupgPRRslUsc/fol6PJ2cD1 5m+VEorvGO+UfrbFjF4sPndvG1KxgNsNmDeFk2U/oY1nqucGbjx0fSucj/wVY/TiWHFZiOyoe6lLxXCs lWIZwoU1BjSccfrKUIW39csM5izUJ4PhMqcHnfkxplj1XS2tf7U/s3NDb36Wu78s7xAGjhsWfyG45FSk OluKRBOBhWPI0cnGehDvBLvINFGGSltEpCuLuVHCr0DcfIxsrfary7c8lz2HgnaZpAewxfMvMoSHB4vX ox/rXHWoXboxiEkbKWmGkv1XuqJhy2UETTWeUAXoTWVojwkO/EwKGr8jN5x5tBzjHONqBkEdLxxyNS4T qcGL68SDAvr4IPiOelDsUASXJjCjqTKhcvDt+Idg9Y2VGyQO9cg98s4YPg0THWHOsjmEcPhOSnKpgVO0 iHpl42bI/tVvovmTXZypDAb+Uu/WBAROWPdm7olfm8OuOLuAsXFe23dYTW/rxxcePACMsOzsc6OEr1YK 8Yp61VfsIEKXsmxm3KR4C3wo+BLg7Qj0Puefc+AkV+0AmiA/488IPwsWI8yXf98nfUnHYTll9CWBGOxa ko4yiWFrm+31YegXgB0D+odX/Fz+6+8BSI0jzQP4spul7ksBmVwVhDQVheXVV70w+0ycks3opyRp4mrW /NcLs+Myp8imNFvd+wcvwG+zpYYHqkjqnVqcsKn5tKYUVNCvviTb7ruW/JELJ1gu5ltzgt9MyhLmyzCN jHKk9V65HlplfhYD/yqyjSgrNMbQPW6V5PBugyLW0AM6VEtRZs6maJeupk6cJTsI+zab9yq2FZNlgnBG WF5xbBttVlOc7Qbq0iDiDxlnqbknlnEpdFtXnq34jwWuQL7HVtOrzBUg7IT6N6XGq+0QSJS4FlyeZ8d3 kqH+r887g8TRcPsN4Vs19YzYVDkARst4dyDuWLnHEFjQAFjPPeRgYx+/aCDjwEFHmvwYDnc6Mlm171Tx qhBokIL7yDoKkaTcKw6ERJ0WpmxatMN4G99/EicQa1+oUZ0X/dhfNS6XZ+7KwJneKT99pkLW4LnfLTZK Vhh361fHOMg2rUbnURTcOmOcdnG0ApGeMr6DZ0qBFeng/VR+hyurINnxyzeIfES5HVDoPTj1JWrthHmI hsyqvpgFl8YikracLUlGUPsizVvGIYuCik6BLgkpJeyHdl8OTONdQZY9qyqEsVJRY0ydlwhh4IwkC4s3 7mxUre4RrY7ZXOgjoewLK96E7ur6/bQQqk2xj5NK0oa4LzNgMqeQTnz0ke0Hlm6jnaE0jvWu/iorSoDV xlP98LePm1oUBrgZnvllzoVUzJDf9BNKSWeH+JEX8Zh9ORMDTg3NfXS3ktG7ma+k+Q9QtZY1vm1jCPi5 NjEwPfz8QCTq3O5UburdDnqBNjIkXoLRidkpyL8F3wNqb4ThtNTCpH07D2nPD1Xk6C2GEa3iGeWIEbND MwGMgu7Lms3l5Cg4VLHoPgd0q1+f02pjhTc00ClPKecyXqb6tnZ6FuRF6qVtGdWjk2oM1Srh6yy5wylh 0RChGxKcwNSOp00xn3SHIAg5oxYL/G4nOmcO2L9XqejThFQIoburiLoHrGO5xyOJzGfhMnuOEjNYDt6M vEpjhfZpUrybhCiUP9a2w6WK6+fm7n0uzsCf1GLDC2mGqTDVY+V+7BvGXppU2UaKIAWUdpRhlVQaP+sK +A3rTVCqUS4fOtzR7wYfhyB+kKxmNxvfUkewfX7yPKsMDr/KpaPNVB+GNGzNMWU5zdShKKxCY2tuETZv bwyj50feDEIZ0gAy8tffiaPRv9HUTELUXhaQinSbnyxditHTc9oDq0q3tOvb9RoxTmIX5OeQwkxaB3jA BipCdnoaUZRo59Dyml+AUMWrq7eaedOUUFEkn6YY8MfSW2d5QGC7pg+rq6bNsfAMMeZWBb3Ee0D3Ereq MpFhkGds1ZZFYlFKTTZFhJ3QffozsW5WYFPKxniBvweC2A9UHokHLmI7+OaUCL2XHNiZwvcgYuZLnUgt yF/IeNBF80TFw1KfmAAbStnMKdbHg3xkjXIIgh5dCMyft1u0nMfgBVopkYfTMjMuJ4p0NSBDZ/WKiiuI 0Zn7TKSh2jt2n35ohX9zTHf0TDij1es08YhOvz7k/QF+xEWrmCDBhful3vs/AnnCRUGtPzNhvckPmS68 8Ncz8pBag8nFYOmWVHqD2q3aYHASFjirCUkACQKbzqiMHKVNDtftGR1pGSb0qXWKqDVe2gUN8zAD9G2t jsHFKe10zFIF8fUCl1rdNHimPvX3iM6x42MH7tr0NrysVrbFd4QtTYtGpRAdp/0tHsSmNzWQ0mJggSpl K1TE3aVFOco7HEDYknv3LXTFcqEaNMJP9bapanjQ0tbEqCUw0ZPWYExlCr8/5GV34LgphmuGU8bt6Zuc 8gzhYtuAZTP6oJr2QkTjL78CpXh+RMLg5rKPM0061K1+S+7IJ//i+sq7oxBsTNBd3H6jnZiwill5gzbm Pf6bL5j1Km016PX2UttqpLZKNop5rJv3Lwsb52/suzkCQHtb7UUVWf9YdJLc5DqoLyrHgIXqhcjMVgk1 ZCn9fAW2dXJ1LmghwM5t2K6mixlnQosz0P7ZlaT+aS8sD7wtAEad21Cn1AitjSfvnVORJmhLfLwF8nzZ 7POUsJ8ErYTfvuGbpBJq2SJp/KeLggU54ZFOzekKyqkFfYcotra+Ltne9uHL7cTl+JCdpFOdGDqzWd6A ZbrWMVb3Wlb+64VQZceCV/dmLSzwnMxYs4+JIBZ5ChAQJ70mkCfloo3UAhFw5S8P1Sxu/CQNnbA1sSd1 cHNmXSALVKCbeH+EQSMFjh74jVmVUpEWTCsTix579rfbiH/I30giSc/M0hUSVeXKzl6tdsoofU4OTRHy liba17AMfkD6hiGNjDL8MPGoCdjEOrqP30aqLxTosutJHiLX2uvmjb30h4TP2HU4lXzd4JvW0NuRZs0h BMhLPe2/JIF140GWeGTmdYk9mR5lYY6bPlOJ3gAfkfoH3N5RuN5I/zdT2GawWvbqKg0RqRDxkRQdwqt+ PAqjI5KFJNnpesY5yPqDvE6jzAHu3th8U+1dYrdQcd3eQ/CltvoDI8MvDfOaRGsxzl4C/EAuYBKPIz2f BJiCHeou/XlJsuEGl0ZwyXNy7du2eBINbWc2D7Nk/6jqI22OGQds540LpubzCiFmqx0ILzz0jryRq3Ua Abcr1fBdghfz2pw2lIoPK2rW75dwrJS/mImTr1JNQ5PeTQSxm9VMll8KKpeI1pUiXSOJWNJTzcXHWr1H A3iGuxXLePkF5DZYOCCXSSJxatjf45JuNiJE+R6BCGqnteD5TzLvKYjETtb/mXwExBCugN8s0TBi9Jsc 8A3N9MZ5YsFFisA4Izv73qYmRXJyVlaDcJLVRXmoqROTqTnlUufOuxeFre0Wjg62JjC62tijAf5DCkZK 6i7EIBXwOlSSZhdpRZhoAU2yQllOoEBUwwS2Ue6CJFJksF+if/4eWpBwbTrfrn+IrcNnWGW474Oj6ySV cn5hpF2NKA3vVAYV8Nuf8Z3fKt0QLzzY+I3Z2qjnaX8Jh+gPDwNWIhX3hv8sClk1UdLoLlV5SGDdyiQg eu9Gw+5rU5ALGL93B8IiFhBLIfYia+osahnbFFgWENJ63qEGppPeIq2NIv5sk6dAujI/RtBmYbPPsrIJ 952b4NqE0AkbgMsUJt3uR0zEUHcGcJWe4FncbACLk1ovsGlY/DZS0xnXEtlZinmXpmf9TEMG9u7BxwhO rwCGb/W5TbMqg7UQnpcAjiRZ8V1GhxSq5psx9fPzU/thZEEpg4mkd2IX5LU5SHLGP9yI4rPLhxFjyrpd xejroJTXXET/bjFBEkS34RcW10hAHP1wYKPa90jEyNC70XCOVq+owaBpJoWEZSeTil0UOVoVj8AXekGR ql09oMN5yMcJDaJWsvXjcYxOSXwfRkFR3wDqu0HGoqNihigN29BcIb6E9kon13T97w0cEwnhAoLalOnJ afZg2+HNv4pA45DlgwQP36TZxmuIz8zAqsyMcOG6iscNBIY+R9c29TmcNlJyalmTZrgUyyRNpDf/yaNl wdYj4ZgmKy3O7uK/IhKSkBDu5YPan1N8+JsVNGljXdvHapeAZXV0wd2uBOJrgzGgJBDNLPYVaCUh6YYz 9u3HKVdWJ9i2tLTMeyxU4cAyRlglJ6saNtTpQsPQ2yVJduH3XTb2wf+qVvsVJ0bfPIjcRfj0C6BU1oJ1 biuto/qpSZnw4BiRYrA8M/tRtY3o7AdbVeqEApmjehV/8N1jiu1gtAplQb1t8k3/CLCLWjDWeQsRm7xu YQBwHehPOMZQ0dgOKEyEzoYK5obnhGxHk6O74lRPeGbm7ix+NZ8WIPYJ2r2iiXVSKz63eUsAHrLDPLpU X6GxPJkGJRUxitnwvE4d2lYxqZBqGDSCRhcXcsV18GOMZLbTVi7FfIx40TH5Mfl3vtG6PQInRaoBkBfe yN82hwcwrnuWZipXVRzA3lTlT3691bJ7GiaMvFJ3MCjSrgtXmdIxRo7lvnW/6NPJzgax6/P2hyAUFrbt wZaa0pFQc0iOlUF4M3RiijRfDTxnh0UMiig13xeG2ayOm7fHvnkf3DUJMpXm1UBQWsIZ6/nUB4Jlo+Xu Nl3ZvkYoNTqfqvGeYGks5Q90dlhntjILyHEjFEHDGf2SnNSQs2IAuBbjAVUhslsINVkWNnpOZea5ZnCX Xe733bVr/dJbA8z1q3mkpH1Q3d9PdKk9lOpZSfewshVS52veJGD1wj0Ea3/o7AZrQuW3DjpIn8aaCU9Z nj9XAZc4BGhPJUjYQT7pJO0PTKoLMiagBDU85WLpLWcJ44SBBizvIvyIn5xIdYh2C3uqGiIXnhfk/yHI ukQYRXNVkST3MilNHFXwVVYDnCUsssnURUeXcE82kgQFYmecPrnEBbi0wnjj9KkocRp39OrWlQXSjFFl jXggsXop/tnbuKGMWNjewUjgR3LNXHKUw5wak8tC7TkGzRMdSMNXFRQ1hOCFUR0CSrW8WlmigHB7HsC2 lT7MXnKGLfosXQY96FT9IQg/L/zBIBxh34xstrJm8Uohv2uirqa+0jMpxSdKIm66SijLKEFGm1Erqzh3 qr3STAj3b328eQq9DHNAZ7e4cuTLoqAqAXH9GLl258cItWUMEXWXdNi1GgTpDMncQXGntDOTKPE/MITk QRjuwHlR9+BeSSOyGcMiKUnn7N7b/peIZSiGbk1G9wLelHCHr44hfIOygffwHPfRevzVAILYRi8nKBnr G7S8gRhFRnP2+D7sdRrPg9pEUHtveQp1eU2ZcfjMkwLM/fGfvOwIw8cfGc6PMxLvyZZHwMDiGkDf2wFJ DrqNqhQv4qe80b7e19nfWoD+uKC5G7zCrPh4R8iPTjRf0TLUZACg8O0MgMIaf7HI+En43SarsP+++odL xsHbDh5RLQXeFW362mDrdZo/alIQdzOQj2vbDwxVRUyp+kyNThT6OONU6guAReFLI2Ewy9A9XiBpDCSc dtuSbNQhzpudPoV3O1ewGHlACsgJWVQm4k4kU7kKSJrAnDhRvWGhY16NP57hQqpiDEU0VO72rN5xuSvl nufts56/jIvJFNonPsTl4TEp1lUvaVmzqm5fxIsQ5m1IHdd/1MQHfJSJZolYZOVACVUPmXgc1CfYCQgL eR9YsWDzV0REVqqRMxWS83kC/tiZ8G689XMB69R8qtuBnH8YQYTuv1k5LRmB8Iy9Txy8wptyDpg4hdlj 2KAXirKc24rkX8mqentrOX1+ItQbBLVYTjOxrKo08aaOvsriAhP9sHDvOx1GNxBKCWBuhtSYCoelhyDV F73Gft9qS8dElcINxMH/gqtvMBGg3wg3sYYXQJFZ9RCHBZ+SUk1bTQn+6vndoI4XkD0cvW/obUI7i5cB /i5H4ut1otOIBlEnr5p74zbik5v3Odvmmn2AJU0+/f6bzYphGQLdlbxoKnVQW2mFuj2irUn59iUB7tZF z7YjMsfQYIUTVkdKHqI5WrjYVxGmjgL+M8pQeiC7fo1w+HpnmOQy6e6M2P5VQk/waNq1UqissGiYxamV G5yC7StRIGa4ctOckZWO+3Xvh/xe4/VtVG2SHr8AfsjGQgW48q6ETIiLOFLPxwGwyGVpkFgwKrdDL6XL ++reX6OXbjPuLNN2hYTwWuMQ78788lkVxt7cAPVt1Vb3VA4z7ajoCB9rZ6vmFuUlqa2be0BWXwUJnKFq gFkf8ff2vrXNdVqviYGwINmnaSL4H8mnmVQNex8ETwoHHZhQp8K2vbgpsRbbP0y01P0WwpBNonLfgVQA KAoAAGYDAAAOAAAAGgMAX+h8Ni9xwqDy/ZjPuqHqUz0BPVgZVt857+seTeNyUajemDMV3Zxvs4QZzTi/ ex7r3yMWYNwJ2zgQpB51To0cOuQ6mxpJkIrWc3Y+YudRzIF/gT1uS57tnLN30wWyZZw5OJOnE7XKH5p0 szZK6IL1W29NkL+2nXojI4un90rRd+ELqjVS2+zdocAny+rCYF0bxtEQK6VfnWdYMY9Zl3ywmmdlIuY1 d3f4b2yaoZjIyx/JF1uRfy87+T5B79Z+7+u027jaSDdpM6j39IrzNXaQx0L8zOunNiIIcsRSJHCSV5pR psiDNh3kl3/mVNGjt/aILLJy3Pg4s3ImwRaoPTb1V7CmXxUGnoE3kHS0AZQsXcn+K+8NFKonXO2Ou4Dq Dd/bLNbcXtrM52lnTV61Ku/MWI/y4g4+BJiMxAEqMnZJzH9O33I5oyhDh2rcaMVniuQr+0QWiY4O0bgW NcZtac/dDw+/PoIkitO6bO7iHyjLE3gUu0r5mLH8csskywK7+SGAVtT0vc1w/B1/Ef0QHC77ERCaWzbb lCiImNZ19sVVTpQnv33Ch369/pu2FwQmU5cKfikwYi+O87K9VnADVoI1kty619hwHyOeUV8p/fIvseOY +KQjYmw8er4jqz9PqQpEhLjc1n/gqJzhAWJPC5b4HmWUV1IBpUGoDwP1KOmDjCX9LimqI+jjRSKCN20j aqRIfdgGQh3DBh3w9HuDBIAkFl8Yvy/hHDa6Qn8QRSMbKWV9r0vNnP2NAwX5WoCc5k4XIo2BvcDfo7rJ hO6DtY1igCSm04CptpkYOAlUJVuh7Q/rHXXTO/COjpfpG3xZUFhc3Lkob/qdThYeJcVV8Z5D90n35ITB 74z3p6ksJo386YCMXocucZ8lk77E9PCfgCVutM+dqSTJtC1O0Suv5KohpDC+HCF9UGrM8kDsh4dbJyKV TmupbwqRM2MxSJdGgsl0MytIf/Q1eq/MLd9QnREeK2QVcfdeU6UMg1pj6K+UMmcKh6vfKxrd+X+aTmx7 syv8NeHoj19nhxzfwYcYKAZ7grDNJnc+ElVDPvlkJyPXRjdq0q+fkIdZsEvbBKO5z3P3Dr8VsxJzcEX7 lmYKln5ZHgcXoAsZwjVaUo3oJOm5noOp287J122Cpa4ltoUOxyaODhzmcAUAAP0AAAAOAAAAGgMAAGp+ 1iE4O4jbe/N7r8KKX67/b06w1E8wIqvUaB1x2jjR1mN+NEQkC3TsG8p5YFjP7koljAezJFAhYxgerIKs 2tbtPPC2LvBfaXF+XxhM9XeXxF/yQaJtLL6oaz3oO6C7/qjBCpB1mKVEumtHYb0xekCbqfLmGgvDcQ2r ovU4acwl1hv1f5iI2HSvKVJtRyT2CkWSsad7XlpYfZm3bUP+P0nDa60as0WxJQYT7wbig0/HwhC12dKF r0+xSAgGYo3L7rdw2d4PYOF2Xxa+zT3Q8sDa7mkyNilNT2ZaVrzVrxixUWer6lH865qlA9yrwUIDvOs4 zd11rP5RqgAAAQAAbEUAAFBS6O0LAABVU1FSSAH+VkGA+A4PhWcKAABVSInlRIsJSYnQSInySI13AlaK B//KiMEkB8DpA0jHwwD9//9I0+OIwUiNnFyI8f//SIPjwGoASDncdflTSI17CIpO///KiEcCiMjA6QSI TwEkD4gHSI1P/FBBV0iNRwRFMf9BVkG+AQAAAEFVRTHtQVRVU0iJTCTwSIlEJNi4AQAAAEiJdCT4TIlE JOiJw0SJTCTkD7ZPAtPjidlIi1wkOP/JiUwk1A+2TwHT4EiLTCTw/8iJRCTQD7YHxwEAAAAAx0QkyAAA AADHRCTEAQAAAMdEJMABAAAAx0QkvAEAAADHAwAAAACJRCTMD7ZPAQHBuAADAADT4DHJjbg2BwAAQTn/ cxNIi1wk2InI/8E5+WbHBEMABOvrSIt8JPiJ0EUx0kGDy/8x0kmJ/EkBxEw55w+E7wgAAA+2B0HB4gj/ wkj/x0EJwoP6BH7jRDt8JOQPg9oIAACLRCTUSGNcJMhIi1Qk2EQh+IlEJLhIY2wkuEiJ2EjB4ARIAehB gfv///8ATI0MQncaTDnnD4SWCAAAD7YHQcHiCEHB4whI/8dBCcJBD7cRRInYwegLD7fKD6/BQTnCD4PF AQAAQYnDuAAIAABIi1wk2CnID7ZMJMy+AQAAAMH4BY0EAkEPttVmQYkBi0Qk0EQh+NPguQgAAAArTCTM 0/oB0GnAAAMAAIN8JMgGicBMjYxDbA4AAA+OuAAAAEiLVCToRIn4RCnwD7YsAgHtSGPWieuB4wABAABB gfv///8ASGPDSY0EQUyNBFB3Gkw55w+E2wcAAA+2B0HB4ghBweMISP/HQQnCQQ+3kAACAABEidjB6AsP t8oPr8FBOcJzIEGJw7gACAAAAfYpyMH4BYXbjQQCZkGJgAACAAB0IestQSnDQSnCidBmwegFjXQ2AWYp woXbZkGJkAACAAB0DoH+/wAAAA+OYf///+t4gf7/AAAAf3BIY8ZBgfv///8ATY0EQXcaTDnnD4RDBwAA D7YHQcHiCEHB4whI/8dBCcJBD7cQRInYwegLD7fKD6/BQTnCcxhBicO4AAgAAAH2KcjB+AWNBAJmQYkA 66FBKcNBKcKJ0GbB6AWNdDYBZinCZkGJEOuISItMJOhEifhB/8dBifVAiDQBg3wkyAN/DcdEJMgAAAAA 6aYGAACLVCTIi0QkyIPqA4PoBoN8JMgJD0/QiVQkyOmHBgAAQSnDQSnCidBmwegFZinCSItEJNhBgfv/ //8AZkGJEUiNNFh3Gkw55w+EeQYAAA+2B0HB4ghBweMISP/HQQnCD7eWgAEAAESJ2MHoCw+3yg+vwUE5 wnNOQYnDuAAIAABMi0wk2CnIi0wkxESJdCTEwfgFjQQCi1QkwIlMJMBmiYaAAQAAMcCDfCTIBolUJLwP n8BJgcFkBgAAjQRAiUQkyOlUAgAAQSnDQSnCidBmwegFZinCQYH7////AGaJloABAAB3Gkw55w+E2gUA AA+2B0HB4ghBweMISP/HQQnCD7eWmAEAAESJ2MHoCw+3yg+vwUE5wg+D0AAAAEG4AAgAAEGJw0jB4wVE icApyMH4BY0EAmaJhpgBAABIi0Qk2EgB2EGB+////wBIjTRodxpMOecPhHAFAAAPtgdBweIIQcHjCEj/ x0EJwg+3luABAABEidjB6AsPt8oPr8FBOcJzT0EpyEGJw0HB+AVFhf9CjQQCZomG4AEAAA+EKQUAADHA g3wkyAZIi1wk6A+fwI1EAAmJRCTIRIn4RCnwRA+2LANEifhB/8dEiCwD6dgEAABBKcNBKcKJ0GbB6AVm KcJmiZbgAQAA6REBAABBKcNBKcKJ0GbB6AVmKcJBgfv///8AZomWmAEAAHcaTDnnD4S1BAAAD7YHQcHi CEHB4whI/8dBCcIPt5awAQAARInYwegLD7fKD6/BQTnCcyBBicO4AAgAACnIwfgFjQQCZomGsAEAAItE JMTpmAAAAEEpw0EpwonQZsHoBWYpwkGB+////wBmiZawAQAAdxpMOecPhEQEAAAPtgdBweIIQcHjCEj/ x0EJwg+3lsgBAABEidjB6AsPt8oPr8FBOcJzHUGJw7gACAAAKcjB+AWNBAJmiYbIAQAAi0QkwOsiQSnD QSnCidBmwegFZinCi0QkvGaJlsgBAACLVCTAiVQkvItMJMSJTCTARIl0JMRBicYxwIN8JMgGTItMJNgP n8BJgcFoCgAAjURACIlEJMhBgfv///8AdxpMOecPhJwDAAAPtgdBweIIQcHjCEj/x0EJwkEPtxFEidjB 6AsPt8oPr8FBOcJzJ0GJw7gACAAARTHtKcjB+AWNBAJmQYkBSGNEJLhIweAETY1EAQTreEEpw0EpwonQ ZsHoBWYpwkGB+////wBmQYkRdxpMOecPhCoDAAAPtgdBweIIQcHjCEj/x0EJwkEPt1ECRInYwegLD7fK D6/BQTnCczRBicO4AAgAAEG9CAAAACnIwfgFjQQCZkGJQQJIY0QkuEjB4ARNjYQBBAEAAEG5AwAAAOsn QSnDQSnCidBmwegFTY2BBAIAAEG9EAAAAGYpwmZBiVECQbkIAAAARInLvQEAAABIY8VBgfv///8ASY00 QHcaTDnnD4SHAgAAD7YHQcHiCEHB4whI/8dBCcIPtw5EidjB6AsPt9EPr8JBOcJzF0GJw7gACAAAAe0p 0MH4BY0EAWaJBusWQSnDQSnCichmwegFjWwtAWYpwWaJDv/LdZG4AQAAAESJydPgKcVEAe2DfCTIAw+P wgEAAINEJMgHuAMAAACD/QQPTMVIi1wk2EG4AQAAAEiYSMHgB0yNjANgAwAAuwYAAABJY8BBgfv///8A SY00QXcaTDnnD4TQAQAAD7YHQcHiCEHB4whI/8dBCcIPtxZEidjB6AsPt8oPr8FBOcJzGEGJw7gACAAA RQHAKcjB+AWNBAJmiQbrF0Epw0EpwonQZsHoBUeNRAABZinCZokW/8t1j0GD6EBBg/gDRYnGD44NAQAA QYPmAUSJwNH4QYPOAkGD+A2NcP9/I4nxSItcJNhJY8BB0+ZIAcBEifJIjRRTSCnCTI2KXgUAAOtRjXD7 QYH7////AHcaTDnnD4QZAQAAD7YHQcHiCEHB4whI/8dBCcJB0etFAfZFOdpyB0Up2kGDzgH/znXHTItM JNhBweYEvgQAAABJgcFEBgAAQb0BAAAAuwEAAABIY8NBgfv///8ATY0EQXcaTDnnD4S5AAAAD7YHQcHi CEHB4whI/8dBCcJBD7cQRInYwegLD7fKD6/BQTnCcxhBicO4AAgAAAHbKcjB+AWNBAJmQYkA6xpBKcNB KcKJ0GbB6AWNXBsBRQnuZinCZkGJEEUB7f/OdYhB/8Z0QIPFAkU5/ndNSItUJOhEifhEKfBED7YsAkSJ +EH/x//NRIgsAg+VwjHARDt8JOQPksCFwnXTRDt8JOQPgkX3//9Bgfv///8AdxZMOee4AQAAAHQj6we4 AQAAAOsaSP/HifgrRCT4SItMJPBIi1wkOIkBRIk7McBbXUFcQV1BXkFfSIt1+EiLfRCLSwRIAc6LE0gB 18nrAldeWUiJ8EgpyFpIKddZiTlbXcNoHgAAAFroxQAAAFBST1RfRVhFQ3xQUk9UX1dSSVRFIGZhaWxl ZC4KAAoAJEluZm86IFRoaXMgZmlsZSBpcyBwYWNrZWQgd2l0aCB0aGUgVVBYIGV4ZWN1dGFibGUgcGFj a2VyIGh0dHA6Ly91cHguc2YubmV0ICQKACRJZDogVVBYIDQuMDIgQ29weXJpZ2h0IChDKSAxOTk2LTIw MjMgdGhlIFVQWCBUZWFtLiBBbGwgUmlnaHRzIFJlc2VydmVkLiAkCgCQkJBqDlpXXusBXmoCX2oBWA8F an9fajxYDwVfKfZqAlgPBYXAeNxQSI23DwAAAK2D4P5BicZWW4sWSI2N9f///0SLOUwp+UUp90kBzl9S UFdRTSnJQYPI/2oiQVpSXmoDWin/aglYDwVIiUQkEFBaU16tUEiJ4UmJ1a1QrUGQSIn3Xv/VWUiLdCQY SIt8JBBqBVpqClgPBUH/5V3oev///y9wcm9jL3NlbGYvZXhlAAABAADvCwAAzgcAAA5JBAAaAwB0Enwa CDYK31X3GAsp2RVKBzyU2vOeVbVLjlXbCX5flQT8x362VCHQnZDvxDRSksSS8yQRU4y+tZgd5YrB8JYf xUK+ALUnjauY4G53cYDtTxFpsFov2DqpxMdx7dLyAogW99ID9wo474dci41R0IOas5rzKYeBwOhjfjR8 0wGXPI6lRqGU4hSPfCp9SY6a7S+rjuzTB9o7k/RGyyO8Y3jEE/CDthgzlokgIoESz5H3cyQU3ooqPpVM wCxpLPiJVZci7grutPLv9antoCvKC6CHFbg+Gsou0B4LKSiYX6dcvLD2MiLAa5PuB+8sN8jEn3W7+hAM S2rYHYmDYZd4lHKLKPW6FNaRTnyOroXcztctTA2hvOEUxnah2ADRy7TRVO9oh0j20t3rYlBUO/5sSr+8 Gcu4M+tLMBinhPsxAapLlUG6UGGvJrHNGjc5Tmem6Zb1GuCpZdXQ251ST8CwwbPn2q6EuzOyQ/65ApD2 6yb8PJuHk0FpGmYEr/CGM9e495qwKqixrA9AyXc7+uXzC9INBttsnVATiU56x1O0qJKNx42lcwzRxHCL jDNRSQlgQbP4V0zWU0Uf912DxPk223yolrzrkSVKhPwEbR13jnxwTWKt2lKIpmamWgDbabDbjloZjm7J ZniulnP1P09/QXcaixMNaI4V7AJeeP4TzcaqErDuTuw/cgZiLIYYJvRxjxQ9kJH//+S9Uf/7X6L+wcgl 6NAcm1D+G9/FbvnEr5AiyOCEIk9YlAzvcXRKKlGMLJ0ZHwbYcKNcpChz71nxsgh5xpU7himKNfLcOvBi 53AOS2BBtF92z6xl/0OPH1OGjMAVatif5mYQP2nBYKGRBsqxP74K/y92KPqKC5qNTONEK/nLiEa4+FNi xzZLcxKaQ4anJ+7Vr1fAtj9keICbx8VtRHox90pfAD/ywBTWaY+ETTg4bFKwcsNXvtGDG9IO576ueu7H xm/oLrv6c9yT2hhgWH58yFWvEPivXC34oAgHozwYlUxUqbD6ncPMg53Ix9+aogEHzl6A3BZXqiTOfvB9 ZvYzK80w6NDrObklhlDtIWKFB46ZOa5hct6nVjiii0zOTlx1oZ5VsqpV0VOSh1VDpxYSUbN8jAzisdP0 W9ieOlFf5Jc872/moni2uv3srRxvj8Yp1qTrG3VMlaC1tyEt72HBMiSV7OdgV53TETyxYi8uFW5jOWHc +Z/ykoZfEemMEPuci0J8m1cRTjgmKB4y184oy5ptDQlcafDv6NvcQixiCVk2DIsjkOer/j36hU+ttgrG ciMpZefETB6FMZEX7j5ZX+WrUbzUgkVn1ZSsrWZoMnEXhgda9sU3vPwwRMaAwhMhvDodgJKyN0MWspfx K1gWucH4XiwFvOQmPf2dToQtHkVAsir6gYJjte2pm6JiY+2243Pff4RutUnFUV/0MAXxoS3YgPolfDmn Nlv5h2RWX/8WTy3fz0/aH+KeUqe1qYZPBpnzt8SLv6gkyYvFmwFI62LO0zFQaKhJu4pyjHCbnDSCXPIJ LWrjIMxrM9xt+E1liI4CUFchzvzaCyYFcRb7sWV2s3cBrL/4eEaowpaXFWsn79Ldn+OZTRcLs+47c+XS dcaKEG60n1EdnFUtkhsBiWgzjYUkbLokLMeACJTv73WnnTlwqe5kKIBI2mAy4UFn8sG5EvSLPYrJzfOd kW5RyrVe/ER0koe8+7EzCuVUxqwsl63nSt23cQkK9zTY4xZRohODoW36gGzqj1n43OvKvwgu7tR9RSbv iVwqFwdl8ut/3kgXTAa1L824FeaiJSC9x0pP473FwXWqksJZYZn3/E2/NAylNhhg3oem6gAGf2QGMt2v NxrY28e3twxdzp4pz0LhnrdWspvv2/G8MAqHJPUCYYtM0um9UtXfLE7RyAaX8Oci14mFnazfsqhF4OSh dCX+RPoSJemPs3Zl/q54k6mK5AYY8fr7wQr2VgDuFNdb+bD3qkxdLlSRyXuLRt11XVrbAC3GBBTjxSxt SDuhKAJAPGyam3wp7pYkKL7Xiql88wZ3qHvgD+awFTNy3ttaqWAtGAYEr/s3u0j8qakp9RluMsUCLcLk ZPpfywHMjYLdgbQrvYKDizIGLzS0HWoJXGG+6ZTyRIA3kK423LvRWF7N0OdHBmUy6Dl6bOYon8BDvob9 b2KkaFbtrOK9ME5B+mY0XjYhcCRqCMfTJftrVMCtWvt5iEVR7dkcjrxacGDbmTiZDTEOx7CL+k0UmeDF 7jZ7etfY61nqRv13eeEBO2GfE4mFpZOexeNMlCY8ybm2ItGQSTvDJW7A/bzZYYbtDSB2WukDy10HSpn/ vCbR1CR1PodHqwAvc/f60atLi+lUDT8SrOmyqWkoaUUHe8Yg5PXlZ9Ar4KdXJ/3K896okyHcWLHg2beL OzTqPmkk3GHpm8IpyujPoDINMTEEIb5LkT02pcm93UIM1wM3Byma5HtjFbxiVOocbb3cRx5ZmW64RPcv ioVwhRIBQeLEYlkls5ju3WYVraCc/AY8yjnW25twuZ3LvTCinX5IezfPFiDfbWZRRMkeBy0ucxNWLBjH GA59BVpkJ+VwR/qy0517N+0YzfaXr5sc8Xvb1gUXBMuQiZkkBPXVP/QkNkgiYKlJ/JKjdqXys+PGsKHC uMsQsiA17qcJxWMA0A0AABoAAAAOAAAAGgMAAG/9//+jt/9HPkgVcjlhUbiSKM+HU/eKBwAAFAAAAA4A AAAaAwAAb/3//6O3/0c+SBVp2BLxF5AAAAAJAAAADgAAABoDAABu+EQYANAIAAD/AQAADgAAABoDACOQ 7HQgFTs34gg2Rv83Mg7hHhkJdcrKX1Adze79eb6wXGmxn2jnXiE2D1MkDTW7KPHYBkuDGatwO9oRoNx8 dFLx+j13RkTD2HHB5wFw/0ZkuKunUNOGxn2Tzuboa3fydNBhWwh2EeIThtzyorxSgOgX/mdotvYqHBFb ROnPJj92yrwQ9ouY+0pMcU4+ovAug/raL8TwRBQLOPWe/qDg2tP2+/MiprOkbF713cUfkx0fZuJlfTkU frlbT7QGwTH/4shLmzXGjII9ZN5L77Yknvd1ccIj41/51ctQkjhPekgRa6G0Df9EZQgj+VP/4eXL1lce 95+ImU4PCCebzM7CS3cDQx7yRXmORLqRxobO14mdl1Cf354sYWlMsQgWhYKGTHJH2LUrkICidJJ6bN1M OK6ZY/zTUCEi9lYo1CaThxyznvuPy38phGw/VIA3/wUp/Za0E7Ow9NwL2QAExVxzbMK8B/w0olRJt+UB 4EsnN5Gi00SXv4X9nRsl0D9GCiddv4IcNQcB/N7rnwAyZX1T+LIx9xmu9CBYREe+SOe1PAQWKSELjhLM xnjE8Dv4FPILLWXUJi8iiafHsFoIb0zZgxRNjrrzAIHhdqg1P04CbSwIYhKDrWo+Dm2SM35U31sXEl2e e39N7jFk+Gd7KMdby0cvD7c2auj+6n48DoYAAAAAVVBYIQAAAAAAAFVQWCEOFg4K6tHB/7Di4BvQCAAA /wEAAPi4AABJBABL9AAAAA== ";