結果

問題 No.3024 等式
ユーザー rsk0315rsk0315
提出日時 2023-09-14 01:15:12
言語 Rust
(1.77.0 + proconio)
結果
WA  
実行時間 -
コード長 39,642 bytes
コンパイル時間 13,068 ms
コンパイル使用メモリ 378,336 KB
実行使用メモリ 801,280 KB
最終ジャッジ日時 2024-07-01 09:17:39
合計ジャッジ時間 21,938 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
5,248 KB
testcase_01 AC 5 ms
5,376 KB
testcase_02 AC 4 ms
5,376 KB
testcase_03 AC 5 ms
5,376 KB
testcase_04 AC 5 ms
5,376 KB
testcase_05 AC 5 ms
5,376 KB
testcase_06 AC 7 ms
5,376 KB
testcase_07 AC 8 ms
5,376 KB
testcase_08 AC 8 ms
5,376 KB
testcase_09 AC 5 ms
5,376 KB
testcase_10 AC 5 ms
5,376 KB
testcase_11 WA -
testcase_12 AC 154 ms
26,880 KB
testcase_13 AC 154 ms
26,752 KB
testcase_14 AC 191 ms
33,920 KB
testcase_15 AC 6 ms
5,376 KB
testcase_16 AC 5 ms
5,376 KB
testcase_17 AC 19 ms
5,376 KB
testcase_18 AC 7 ms
5,376 KB
testcase_19 AC 9 ms
5,376 KB
testcase_20 AC 5 ms
5,376 KB
testcase_21 AC 5 ms
5,376 KB
testcase_22 MLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

// This code is generated by [rsk0315/cargo-atcoder](https://github.com/rsk0315/cargo-atcoder) forked from [tanakh/cargo-atcoder](https://github.com/tanakh/cargo-atcoder).
// Original source code:
const _: &str = r#"
use std::collections::{BTreeMap, BTreeSet};
use std::iter::FromIterator;

use itertools::Itertools;
use proconio::input;

const MOD: u64 = 998244353;

fn main() {
    input! {
        n: usize,
        a: [i64; n],
    }

    let mut memo = BTreeMap::new();

    let res = a.iter().permutations(n).any(|p| {
        let a: Vec<_> = p.iter().map(|&&ai| ai).collect();
        solve(&a, &mut memo)
    });
    println!("{}", if res { "YES" } else { "NO" });
}

fn solve(a: &[i64], memo: &mut BTreeMap<i64, BTreeSet<(i64, i64)>>) -> bool {
    let n = a.len();

    let mut dp = vec![vec![0; n + 1]; n + 1];

    for i in 0..n {
        dp[i][i + 1] = a[i];
        for j in i + 1..n {
            dp[i][j + 1] = dp[i][j] * 101 + a[j];
        }

        memo.insert(a[i], BTreeSet::from_iter(Some((a[i], 1))));
    }

    for w in 2..=n {
        for l in 0..=n - w {
            let r = l + w;
            let mut tmp = BTreeSet::new();

            if memo.contains_key(&dp[l][r]) {
                continue;
            }

            for m in l + 1..r {
                if r - l == n {
                    let (small, large) =
                        if memo[&dp[l][m]].len() < memo[&dp[m][r]].len() {
                            (&memo[&dp[l][m]], &memo[&dp[m][r]])
                        } else {
                            (&memo[&dp[m][r]], &memo[&dp[l][m]])
                        };

                    if small.iter().any(|x| large.contains(x)) {
                        return true;
                    }

                    continue;
                }

                for &vl in &memo[&dp[l][m]] {
                    for &vr in &memo[&dp[m][r]] {
                        if eq(vl, vr) {
                            return true;
                        }

                        tmp.insert(add(vl, vr));
                        tmp.insert(sub(vl, vr));
                        tmp.insert(mul(vl, vr));
                        if vr.1 != 0 {
                            tmp.insert(div(vl, vr));
                        }
                    }
                }
            }

            memo.insert(dp[l][r], tmp);
        }
    }

    false
}

fn eq((nl, dl): (i64, i64), (nr, dr): (i64, i64)) -> bool {
    let nl = (nl as u32) as u64;
    let nr = (nr as u32) as u64;
    let dl = (dl as u32) as u64;
    let dr = (dr as u32) as u64;
    nl * dr % MOD == nr * dl % MOD
}

fn add((nl, dl): (i64, i64), (nr, dr): (i64, i64)) -> (i64, i64) {
    let nl = (nl as u32) as u64;
    let nr = (nr as u32) as u64;
    let dl = (dl as u32) as u64;
    let dr = (dr as u32) as u64;

    (((nl * dr + nr * dl) % MOD) as i64, (dl * dr % MOD) as i64)
}

fn sub((nl, dl): (i64, i64), (nr, dr): (i64, i64)) -> (i64, i64) {
    let nl = (nl as u32) as i64;
    let nr = (nr as u32) as i64;
    let dl = (dl as u32) as i64;
    let dr = (dr as u32) as i64;

    ((nl * dr - nr * dl).rem_euclid(MOD as i64), dl * dr % MOD as i64)
}

fn mul((nl, dl): (i64, i64), (nr, dr): (i64, i64)) -> (i64, i64) {
    let nl = (nl as u32) as u64;
    let nr = (nr as u32) as u64;
    let dl = (dl as u32) as u64;
    let dr = (dr as u32) as u64;

    ((nl * nr % MOD) as i64, (dl * dr % MOD) as i64)
}

fn div((nl, dl): (i64, i64), (nr, dr): (i64, i64)) -> (i64, i64) {
    let nl = (nl as u32) as u64;
    let nr = (nr as u32) as u64;
    let dl = (dl as u32) as u64;
    let dr = (dr as u32) as u64;

    ((nl * dr % MOD) as i64, (dl * nr % MOD) as i64)
}
"#;

fn main() {
    let exe = std::env::temp_dir().join("binD00A83BA");
    std::io::Write::write_all(&mut std::fs::File::create(&exe).unwrap(), &decode(BIN)).unwrap();
    #[cfg(unix)]
    fn executable(exe: &std::path::Path) {
        std::fs::set_permissions(exe, std::os::unix::fs::PermissionsExt::from_mode(0o755)).unwrap();
    }
    #[cfg(not(unix))]
    fn executable(_: &std::path::Path) {}
    executable(&exe);
    std::process::exit(std::process::Command::new(&exe).status().unwrap().code().unwrap())
}

fn decode(v: &str) -> Vec<u8> {
    let mut ret = vec![];
    let mut buf = 0;
    let mut tbl = vec![64; 256];
    for i in 0..64 { tbl[TBL[i] as usize] = i as u8; }
    for (i, c) in v.bytes().filter_map(|c| { let c = tbl[c as usize]; if c < 64 { Some(c) } else { None } }).enumerate() {
        match i % 4 {
            0 => buf = c << 2,
            1 => { ret.push(buf | c >> 4); buf = c << 4; }
            2 => { ret.push(buf | c >> 2); buf = c << 6; }
            3 => ret.push(buf | c),
            _ => unreachable!(),
        }
    }
    ret
}

const TBL: &[u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
const BIN: &str = "
f0VMRgIBAQAAAAAAAAAAAAMAPgABAAAAID4BAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAEAAOAADAAAA
AAAAAAEAAAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAABY4QAAAAAAAAAQAAAAAAAA
AQAAAAUAAAAAAAAAAAAAAADwAAAAAAAAAPAAAAAAAAAHYgAAAAAAAAdiAAAAAAAAABAAAAAAAABR5XRk
BgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAJDLkU9VUFgh
9BMOFgAAAADw2AAABpEAAOACAACwAAAADgAAABoDAD+RRYRoPYmm2orhgzJO2QibJD/eIJnUHjhzsK5L
gxY8/N3h04LfAjOc6QnIx5AgyfFDGD21mRXwbZu4GDjp2+sFqlZeDjl2gqS0AJ4pXbKtcqpj4RNOfxcF
XqyYRhbHEJWHYVQ7F5aQvZVk1Un3yCZf4zLsQ2SfEZS01jhEAgXRYoH4sqNdLu0jJm/wXK172inlrLK+
T5XwZsaUM0U0XZL0/c6SawbVJyW5QgHQEA8AAFADAAAOAAAAGgMAF5sJJjNxpgmACx0yTzUav5YmIZ0o
DxV9ljtwrLQdE2EEbj5w5/3iFQrHdD88CR/BgNRgdqloGADcZv1jbd3Scaax7lpRmhX5w57CbYAMz8rU
MoxqhLdfpQR3mlSEQlK3wwMyWjY1ryZ33VBlIp4dxWi+PTvQng+LKwvbCvVh/BixFf0qh1gMpiwdOy0x
Pf73GcKcAe15o2Xx+KOaIOftyxL73uX0YdyaXmBQnXUF7GplrimQqRW8QpLNsVrBf5IB1iAXuHvwsanx
62GWUYOwT2/2dL7WA2lUKH+8Y4B5wS0pjfz27UuVOn1i/RgKEdJOqjPTTjmG5F6bkCYhwuKeybWzXyB3
mnF6QxGtPXnvVj62Ag8HchAjVJAIXe2oC6TZrFzfJP7agj5cGVcgqWTWQUF88OmOBBsYKsDsmqJ5rGFE
oB2sp6+C1zOjmqWWg9vxeUwjqbpB8FfauEiRIF7rP4isJ3H6yHCx3xsq5KVdsLU4q/eKUZXqHfN7KTlh
u/CFFwwX2YyZwId5t0ztYYdJNLYSeKSa6s/CmMODaGGS2GnVirw0o3I0S40wTWjvU0gcoWoxhd3Kf+60
8xE5M/NrKbIQR6D7H53aMksRx0mNjovUHH80bKabAAWjRlzj0Po5SQLE0QLa/QX8GlFDPOD+p6wm1UEe
m0xtcTwNB40gQWCu5mCSHpw09JUdAnSVwzeBLuyoFZoZzKQ1x9uAQuHSdrGAcrXi3FDEbLYk+eWvjkK6
OtlxHu98Gu1LYKNWgCjAeJorsfQakphr4CbtptpNc+9VVW8o1pcTv1+3K+vf+WeSZLpWzhgg/Biu7Tpk
HAysKI0hQ1JEtQ7eZdhFIqz8y4JELejyiT9xQ3Kocmpe7VTxCiwmO77hanrbsfGDR+IHA4iIptI+Kptw
gdx3OSfHkd9mzjCmeKT4+qcamytA2E4/lzZgXRKqiOwnBvBo2gTZ159w7UTDWm2xdCEhDvLcpq7i5hZK
g+v8xG0iT/PMpqX626gvjb+QlsHTrzTykssTufBp3Fe+/HVIWBS3cGaDkjdlNKpyGVJv280oQxbEQYnF
BZOHWVGmlfE5ZaqWxpAaWiz09VKQbJqz1LcIfZxM7xWRxomFl/vCo2E9fMkGkQAAkEQAAA5JBAAaAwAk
INmAglqxPNev9Za8WsGjGtNkSFRkZ0LWVT3d/J5Tf/kAdej+aZAHZ9t8qBPfXq2Z639c6rKcEHPbckQ1
924u/mdnBaniVN/DmNG8qAClCFIkLGDFJGQkDX22ZyQP6mUpgEzL+7Rl5rpzIHJEpJZYmsKOnmeFDZ+f
00GpsBP1WahgcC8aIzE3XW6e8SPIwjVJU/cHsPX2+sWAW8uS5ZzX1yJEoxUPkUstGikMyoOiX9rhC0k4
PWHwMeeefAdpWzEG6RYCxipfigqgC+YI4orJqwkkH1LZlvN/JzP9T2D1q8Dpt5Dnwmx/GFA9OXkC+EEH
NiO3pfceEP5Qcq86h0UXQ437d7vxLfkHDO9F6pxa8CQm+UFeFRrAoEFwC0fjELjBZs8tcIKMTqIX5hqH
IxAiD0SXmR1vgtVpI8l1USaX+lrRzXvCCSBza41y/MnEDfwIJrysFJxqU0bNC/Qhiw+RapIn268rLRkz
GYiOZ4g7IEo9XGpz+QQ9Ab2S4GxBcckY2HvUCTUAY9yvLBEZPTy34MZNH4bNz6v0oOm845AgcXqsly8D
ui8NUWLUxuZyuVGbu0MbbvpS3HHAgtAs3pNJhbXlndIaqrbvYCtYm11kWtA9Oik8bNmX59hzug0FFTzi
xiH978schWYQPMIsSvJwKfaSBZNzwVmrZ9n6FPm/se/Ra1g6tUpVYxLWMWiF2LRpUUyFVoavkVYfGOli
g1hNBRds4DHasKH9qEElSv2SAWMmie9MJlOvCzp2QlUjqGWakbDKfwKbBYwyXfr2dbfV5hPB5XXI9zzg
Q5MBLlnX32OY5yM1LNRz8CFyQG6gVlVx34bHiTL7jYlrEH0wAKS+To1FvaobF3J8d/o2d7o5TNF8AM/r
yYGpsYB0q5Jl3EVr1j/hBNjRp9nDInUHziAPCzVGiuSYBaFkPcjBmimHy5X34aarHolkzhL2zmQx7knT
bYBCKQNX1qif3WdFKFjtIKlr96mEJlelu/oBxpIyIYu02gW2NF9TwY49V2p7L+aVfD6vwtxSXN30Gf+o
v/cDmAEgctK2y9U02x1B4RAINIJd1V6n4IhJAh37BZ4+aC0BC4MKIYKO6Mh05kD+KZQrfFRLkxa1h6MR
xc/o4Zmx8Q/UNRHzBzh5mEXNtBnAM+DYRt34Rqvl/kqRotcEcli+dDzgo5sbGe/9CnOO/bVhkOPtYDmL
Qp5NnqdAUn1FlA+sbwXVShK0++N1rXVKQMzitga74PkIvBw9CLzbSo0MP0FpgaCsdDi07XmrIya/Saba
SzpvpFKHfYpdRsEDs2gSbJIFnSH9jmZb56aWKXYZQ/IRusqt70ebadpfZeBW5GC0WARkEkJ+Dx4dmNdi
hTvzwogEbfmEuB+XFtso3f+RW7cJJji6w7FSXFcfZiVQL3umGuTCzlcjdNo/CDNKf6hNqM0p7OO9kulR
SI75oRGcRjj4tV3LG3xYmLnOoqULKwCEP3j1EHCaqB/NWBaVBZHF/10qG56m6t+3qk2xOihJShGMc0g9
lb0SKUz5gpju7JBLGkf2zFayxhVXGdFNLveFBE7ov5LkoVku7AWRD0G/6NyOcuDF/aspRGwnbspaRuJp
KOoinActeawSGlUbJRW9XaGd/9HjQmAY4jQKwiRgI65mPQKg+72EFLWFCuBhTbA7Ld23lANGgLs0GL6j
IKcytRIPXu+f5dx6NuRLRvXlqsWBsMZ4GZkfPniHVc6gQxpUqYZFcJgsmMX6lX5fczFNcTSHuqnN9hpD
LFXLdXhoxhU838TwSb6muXTnb07nf5r2Ck3oRmW8kjYu3WOPGBSNAE40RYSHT1BY6oFoKyIFc5E9WfHO
65RfMC6dnAyghs9sMRQ/wsXf+cfB0vp6Ho0DAz0JGDPHwZmD+hVYPKDaIvjCFoz1RvZl3iPaTTFDWMIm
LS6EIDea6dCIe7uHQFgTU04iJhneVjEOza+8uhx8vv34t1yEAOshFh50cA4coLRK/BiACz8jN5hMo81w
XOhbu1WFYwoKVbLYrWIDDM1g10Ga5XdmyIyIMg+UNV9rq8Z2PeKhb90LScbD/H4q03kSiD49QTo2y6dc
M188gRwES9EQ1qsjWHjToYotJkxzLKvJdZt3LVwtH5daDPG0yhC2043nvmVDhKZ1+1Fo4shuPXoRjlpD
VvYEvqO6rxAOn/ewv3J+LPm3X+9tiRewnrdq9tZ7UZvWg4KfYEVxvacFhM/huJvm5qdeTEOMEmKW4XB2
LM8enczg4Ld+cLpEAaLdYjuVG1xy/X0pHEQAuZ9TjxsFPFesG0mHwrmVg76fmycDpNuSk5IxNnOme7SP
dXq8ObAHyXI+OxNdQTJCnMAntGA9mvqWlDr41wchPJh4IcKGY1i4jtMTOpZAjWxduGuWgBgp8uJR8B7Q
3v1YQvhnIlwfY6q/NEW6LFyoUtkHdUUtYSkjrUzC3pAa9de7s7Cn4vVVtcO1Yv8qopyZ+ZSfvBUU5fV1
VV42241vkaxYQNnyp5jeM8j+534LhS5l7FZEx6HffqfGdzibKjCOmUk5QWUtcvOHhXWUOIkBAsHUqgW5
CnTtO7wzMxpd9mxHgitsZGQgtQa8E0OUMF5jKnFAi5B0Agp9z656Z5g9P3O31e2tIA6OhacnwG7aAgyd
yV2HGfGT3yuy5Cmfa2OULWlfiJKMoUs4auRNF0sGf+nB/dMLH6XZtjb7dndakhqdTEcRq55D+POWxb/a
8FcfFtceZslNABPF3d7zGPCW01mC3Yemr6/cA9EWitEWiWwmC1UZltJNbQl2FMNv7RyrzhIaqx5WpH16
imcgBBLNKHLcrbDz+FlR7hcKMIqG+gQOfV37+DReGlIaq56LYruHo9npdSUY9gsV5BjqmW8AHf9o8OUX
MNYC/p2IUvzihPp8e6LL3GY5Kgt9aaNuABi1ZFe7JvWu4gUhrpJGk2x3m8kLk2d2uS6zAqisqinniVB4
A+bMoEBCm+i2olATXaCkdkVGvU7/6qEBUQdtuIqo/cc1fv2Jap9mRS/Psxa/YYhsT9AvoJGDWKdMu1LB
9WEBC6nkhHrmsTeh+ZnxRuZl0hThtlxoOvs87l/L0A6h6XcudWmdwYPxVeH64/w5GzRmFYRSKDqyqOa5
iL5WCiH4RXCVqRhIdQR+pJgrK4Goqp0NECkE/vHqtX54sdb62jYT+X9Txz6lsOYocmrd6e2NGLi0BW8D
ZH6z7pz++KTpE0J/EeAXwpJ2fxMmzDV39Rrfv7vrP34iGBahf5RqwoloOYkQzUWZHfiYhcldBOJM1a20
BbXvyiaViJ8uOWJcl1HzV2AQ7Pbpjs/ff3CUY1NZoARQhNbSxEQtc7i9obEH5T2ksQpr5f+2OHJLvqo6
46jqOK+Zf1EPTNp5wyxlhRieuRsIs0x37uy3V+BuC6Uzz/qbwaoPbTopfUzHzg6ujYNc3jvahvwxgXVj
uvfJfJm0/fHKupEynLQlFpmTt0ygDjAGtFBNTKYwpqTpH6+1Z8wSM0WYt09o5Z6MDSPJdTi8V7OEiIFS
WBcAPoaGRFU7tToSWSvnSH34Zv1SGFVtis5Lu6W86K6DPb8o7maUnUxPfHOKxrZOsIu4YkhG/PtDJsG8
IJURc2HA/uVw3LCyTye2kJAxwhFWuyusw5Q+sCQY6qLMw8eW0tZUl3dIyxDc/bGXNakSgMqEtnJd3oF5
Nr4kNaj/pYZ94VMrasIO6lFajJmgiFJmBpcyHVURxwvEAsB/IgyEJPyr1nuwUEe0wzlCSrQZlvItPdU2
/bHw14JS6q0s9bFDaAkln5v3nqslom0wz8HCsptMJnl/9gLv3p4t/u7oU7dPZ+poyrqHRnL1uJytP9qq
sqPtoXQ+nupaNm5aL84uibJF2o0crJq6MNQLJRbcmNFmNUpTVFUX0wEcG0BNZCKkWvG7UZrspQOKGIPq
CjHbF0sopls3myvh5yaFasd1eSAicxXNV8VwZn7HlDug6morOPz1y/L56vfvB+TM6SmRbSSpDT8UV+74
A5lt8a8rzs4XvCRjDWM8SHeUK9C6f3PA4g/zq4deiotkYufVddkeSJiK3DilungssVEa/yeEX7tHki+l
P9QGHMXFDtgrjnBnMJTFs9dKWm0bVkuk2TkrPfRVYhVJ0WOpZt1kfGASONYl7TfcyB0qZEa8Mt/QBBo8
acj+CjCokxNCzOOlvZqS9T3DcK8yaFnbCuEbLMhXaMCELLiBIlYiNIy8S8thKabvi1xANQiHbYvA3UYi
N+txA9sq6nQCspR/1ykVkFokeabI7Bifu7ENCJiKdnB2m/goklzcWpKxaK2YNg8nLV4omu3oc5tDNguB
KF/NHB47QeUvcz3yzVItioFbw3dGFYVUNi1Cr0xigK4ITJdiUszbCSM42hJQ4nEBwEwACCHOlF+MaPp3
mHlBHyM7PE6gTAnCPc3Dq8SRBPJKTEU4kU9J/vjnYFQIj68nPZ1mQC6q+7bm4gZVAULQNUXCTanLp5P2
sgH4NHkFD3RhpIJnadGdFyZvhN0Whu2386Znzpkgqq6XXFsL2goJJz3HFHeDt/DzIVypqfQq0zdXX9zf
NFgHPVY5LFt2JDfBNE2j46WSO8RCvcbPdjOynZJa336H+4KWMkrwSFMQxxtivp8HErz/G5P2pQ6SqASf
yCcXtFgp5f2SLT00H24+6wRzxKMV4LWmhz6IqvtCGQ0Tr9Lli5Poq4yTreFzChteXaY8DdyLojnaoOD7
ZrtO/I5A3Gox3maAZWRrDI4VELumkxeWF9y3QrrmStZiDNsq5W0gKOld68QCrnb/fePWIiR1EGCq7VNy
8tReY5WGXKpf0gj4v5r8LGSmum5fAB3Hs9XtohQwGIzvoaK5t5uh1u5CnpcJVs40/LLC/FWd96g/TewI
I4WeiaWi5Uj+bp/9nXYVbS6+A2hO0f6KLyx2AneO37VJFs52RH9cKyVt0/f087qZWr/UDGb/vx2bNSB9
thWNhqbMRJN/cl+khhpy/GW9cmT9etlrV12Ri/d5mLD2PtopliHR4v5lcjfypfXyBybmjkCfGD5gk/o+
wFO8bTaFXPXmBmiWOpgKiYwuOP/Dmjkzrop7/ATcRcf3fg2He/SVixUu3N+JNq6887iD0KT+jc7DQSBx
eLzbSelx/81F8ZdlPslrwRrjEeS1GJS8VkeofszOjtZPk2RaPVtD/onn4u0z6auOBKWBeJbhiymuXYPb
pGFW45uSuI4Nmp9oo4uq6Np+0X3XGLKqGEeLPsdyLYVmmIQSh7fqM7eXQgqf1IKGJdwLuWU9K/9G5hHM
sxCWGPVk9td+aw7kHbJdG+jJlJz2wzjxvfZKUN/78Wx+XRQQEVYTNrf3eazQunROOviCKLYgjxglR1VG
1Z+ziVPuC5JfAC1oTg7gE9MlZ/pVnp5AxVbIsEGoqYSv0xJoOg/kqbDlKO9idYL9j4+pFwQnJXedo0dd
XiK5YE9wDJMiPlJnOEkSJAn3gtFnGKHd4BvtNlXnCyBz6uaRW0I5+ZgFATJCF+iEdiQ58IvwLKHa2CkL
TlWBFN729785+qpDSx5F+Z+DNUbr8NmV9IhjTFC/gvhurHEYbNpHDPKcQWDm5ps9nrYQ9jqdVRD0RB8L
+HmWZxX6W9RAUoIc7uyePacb3acKBMuayvkb0bxPO3QVgmHRzSdMx1atbnAPZUnz8oCVnOOaSFAQXdEY
AarFm/Z+cNtPn5l6gFeepezdFQlsWSmx7Y0C0WIRQnRcrriFI3fw5Vo1DGG0ZmBv3+lmeuQqiPw3O6ok
UhvkEiy2FZYHlZDWEO2MHz1KL8As4cr+FrvDzN4Brz9b3yTYSJrm0SiAzBEiOVrf2AFXmSaeFXQnvnql
KuVpBCbv5eSjN1lmR0OhWHFkr3+ZcA7uefFEoCYaI2+f5CAnfvediTYlXjtS+oTVoYl4bsz7REEaC3ae
wIheF8C0HJiecTG4kj6f0/GAwC1NXY/O6MtdPrKMg/JZDIHChFlQhKCo7xNtuJ85NNRRJXnF/UfHn4V4
s18a0KGTlCeFqEYj7bn8icFn8vnvlfkYy55PeedIbu/FPNsinZ0WUy8EMFhcz+GMz7e39bhiMyN8Jtfx
A1BeXERPodH1OWnVk5VNCz6ZvoWjU7zkd6fu4k77gWgIIMJDcomdnSdqmd1GuLLxRDFE/AFPDaQWiKPL
2L5tQzmCalz3NFKUZyqBxl5X7tkkIMU8WsDS6+8K2QfkzbJIq5F2MpzoTEJId81CbBcIkeXZBFWlzqwL
SoBGV9h7VPWu3qWwATSCUwTRchQE/Uy/wCpK/BY7vM3GYXibGnJdPtn0jpAwzZhUUyZMRTvgTxWvZmUX
GL58krCG8xiHwcJ6Xsk2l1DjbGjjWXhzrXxW93m1DJ3JJ6DkrnuaFWgcxVYzgcRhGuNfKFPbvCNvWgNo
he393Mw0Vf0b9C5D4GPnvhUhnHu/9CeMHhmquO/nt1BB1oiB553thEP80LrNUKurYKKcLlBGJYHaq5i8
1HtR7sp6Kd/W88q87bPtJrdyjNULWkYTWkM3f2YmhDWLGrL/VR1/7VkN9jujKUhg+8Xi87lPce9r+GUd
jkup23iUJKWPKCdDLxz08TmZB7MkwI4eetxl77E9xOXqlfVPkgiq7D9306YiogYUewWfmOK0x//d0HKw
bswzJDvtQgfKIwn2hy9+oztjwFGxcbhJJxzI5acLrFh9ExHKRO8Omnzj+c4ftpAJvyjPVqH6z75yctNn
oKAlVGg8zLyG9B87Neb2w5/a4CwO3ax+4haDWp5XtWUajRLRzf1JPwC5iIlXQzO/vzk93ViBJaAaqbkY
zUNotRlZvrgXh58PCpR8mDsElN0crYxL2Lubzkyuyxh1Xvs1oL59Zm8ndsUMyclxwGz90TytUpaIqHUk
GIyp95iYTWtT7GkatGQ0w+GMz3XYqhbHnIFwT5Ch0pJHAVTFIVWjt1a8XeqOdHbUBJ5i+TXeaXA24qyf
NuA0uenVXZmKsS80tgGKFMsCjLs5G67pQirPHI3qI2iatQQ+Hz+AsE+HZcVNgJIO1WCENK7bh1CYZoWL
l8KNGLzxNb2W6xpQ+zwBUjGjpByfDJ294hWrDYO34rZPABMpKcvwWSOfe9xUdnOixxTPjm+rNGuhL7yz
T5YoXifNOkCHH9meSaDoFoYj1ZCVWC3j9GBIIikz1swzxJqZQWJbOi5Dccvq3p8SQq0/B7j4gtRi1Hj6
M6FzsOR91b3pIL+GduQjizqEicgLDtoJO7PlkANUFuCRP42eKsda1VVozgZKyJ2LBXV5JiaRzKvmCCgN
ug09krq/6KvnWFnuroBdqQqZBAaBDFacPOf2AvhqAkcQyy2vb17yBB4WQ8Og//9+2r966jFCHkv5xun9
fc4TEWWvwBatatChBZIp+X8bK7rc64Fgx7mfY3+SitMIqWMWGEFa/5CZGxPA073ftd/XccyIh0YY/qrL
pYERqJox/+O8JNsuj1+7gBTXuLA+JIndAuGtnDccRBG2f+c/bLhOXFdwpuOtY+A5Pxop//G5DECoW/lO
Qv5V9TCnbbiGs8dlu8Os0yO/H8Sk9+w/Eq2Irx0LPRTRYXFRdZFZftO89ZR2TYxBuN0krF2aKMNVCX2i
aRFZvO9I2X3WeoSyB7j+yt/Kn8CUScSnCJKRISj/QZe9GCydW/19BteJM+kCr7Xu+JPpqKtuLhd+QnoR
WnQtZQr8ARoBt98MWX8siEFX7uRd5ss1iWgiQuLlRbBaHgiYwuSy2f1Nf/GongH51pvhYuKwLMgxDCZW
YcFFyWLvTzaBkA08YvcYN75Z77rZyI2tpUULggURuYHOzTOMfdLbai8Kkoqv6v9HSrP6DkPOaerPFO09
WA5foi1CWo5QrGUlZDj2HHf+PgFVRTe8ee6oy8dgVnmZ6tj6OgeXvJfhclThESagYNuzDNwXmf+oRnYZ
gXPaJEY4WMIf/waAW7OTxeZOd/VCxKGVi1oyrknuKKmJugDA+lnqnLBwNtsZ5qe6PxrE2brAimFu36QD
5IDRqqqRfBS5f4f9kgZe43cAp+aEFMkYgnWorJ0wv39FkgafHDwRPjd5jXSlBhoAaEpiBrl74lKn7HSl
yxuw113+cusGYvLNLe/tKYfOFlSgKgVH948FBAN44Fj/0gkntPLLddumNySJ8Vf2zV7CwdbRxXdayfhV
lGRlR7gzwIEJVShOTePz2buPria/6wiolkqtOKv3upYditalkbMIIAXEAxEr3/DCDyNCymGqJWCAfPnY
VynSTaaWiRxybJcVrbF50il/bYPw+Up7h+5jMZ6BkGk60FfYg3lMmUaR9jLfLqk6soEeLaNM7HmEkM1k
OnaO9+A8TlDe1tdu/IGP4F9JTFvhgxbMAa1NOhDVzWmVSlOBFVTyQ4aabrUIiBHB3FTClBtSXqkiLNtW
VVa8SkWJDZi2iOKDw2hQnmZ8LGSq94SjvYUs5M55H96n0zPoEq6CuyA0mb5bmb8JskQW2Fou99wA/fBA
tu6TIctYebV83DadEVU/fOiQabrJ3V4fILkFZvwel+2MXCkcu9UGcHhhIzcAk4zJbhcDlbEIQ0LwGAXc
hhP/SeLfT3EhG4a5C6j23lrfGvxhhRx/ZIbbeRmT7IU/pYbys6562A6pMvFhAq/lBHwaqaiPgOTS5R0u
NEijoAEy8Zam4nh+cF6Ds/uMeiW/DDRb+m63yG1pbhEOGyi+9rNcLVgidarinETZFtJGnKoSMTaO3GuJ
p35eQgBfHwgN9T7B2kcN7joX8UFWkmvcf8WRpMWmrkVUb6bOwBtqDj+8GZl98mBSGjsWQnxvtS8Mv1nv
ISNn8ej+JCHhoyj5g/eA9i1GAbctRNr2Ro08Ln944fB932+iUox18/3w50y33wKy7yfEAbfWdCp7hm4/
GqUnOtDgyARsS8etTySIorghziQVEdpeMcfFDDkF3op4i0P5YGnZ/+LDQ9nXRqi/h10BwhIc1BcEPybH
xyhxiggiT4wTXnZAx7e1Cg+qeSvjcaHL9IVhbP8XbtP11wPj/t4yWRbCEIS+40K1flllO5Y4Xo2TIPXG
7meRVZ7WFGpjy5hc4uQD5flJUIe40D5C7XUyVtzFz9WqPtppZoCper9rD2YUHXRdO+dhCx3zqeq2WZIt
uy/Gp3utxmfxarj7d00sqxvSOZEi6JqsNMw6uAGtqWB346vwPnSCEZXdZFu6nk3QHxjWitag4Nw1BI1H
8DMEbGgStAAFQc/pvHVRAf/lrMX72+kE8r5xVzxK78zPSHySnG7sDIl0/onJ5TmPMMZDqapvPiM3v0q1
Npn4iDKkXobd5c7J8q1A/wnQnJJQH1lO4gVvMTciPK7m5HdaWfKq6bTULUBShR5VtGWlRKqSk4TP93ua
WACjFDk6s3xCu48a0vWRiQv5dNjrTCQQmkbJWZhpeIVoA6MZ0J+CAJv+At18gDGyEEeQ8GO94MGEMXzF
ax8b9kfV/aeM0ZiE7xdue+2r0qFuEtOFwTs3w4xe3W9zmGAB56kL59VVLx/5M1okbxXqnd/WhP5ZS8jU
NMkOZpFsUSV++jEsmPr18pNG0/98IBnvprXPiYYre20VxXMWtIayql1Kbzlw1KNSXVlDdlWcTyIamre0
j5Aboo9n6t3XI/2xcKYtrQt9s0MCuIThbizMxV1Mm9PHqnJWY+9RAzvAT4yHXYqTSV85oTQ8UG/Wf9a4
T61XvNZ7fppbPdbC15VKq3xd4QVK40bzo5Od6M+TbZIeC6MCR+c4mVaqydkbKJkJIX5N36RezUcpUi5M
tp/IuTxTSZuaVXjZdP8+pLI8tOUk+pHVYPoiSVNJ6Ghz9uAMUrPuyoG4icXM7ZtyqAGHHORQD5+bf9sh
y2tqhc3SxstBoQUSNmiJAi+a4FMhovBKiJzZXYOLoCSwMRyvk4inFnjlhKe/mX9Aqu5QZB+8NO2Fkd4r
bZ/DFRUumv+9d3K1Dtersvrs2ft/ZEKifGpzJqXjy+U4LnLtevA+7li2qEtzwFAzLG75hYdaAZ0WW31l
YYMFO28RMBhgE/uO1SBaj6AzG0OUds44sistJLZqCODnEEE8yMFESyOu8MicM4WjM8/uxph99SXlu8+A
0kuEFH+VWio2/lFLixTo0HCBqm9mDb2Yk6LbEjn7QxJ7OoD1+3Scwak16TsOJ8o+SJWrNBc0soq10wQ1
oJvi/k7G3beDjlvgM/MFnw5TBUKDaQPO5E2ylphuWMjX7CPGSDcs0xNFELKv9o4tX8v3o1Z2iXckV3/z
b8d7evQTR7sK/cbsBIuonpG9dABTKuSwULBnL8FMxzislcjSrBQpapJwbKhE07TDm4FUfP8iaXFeyA9O
lZnhYfE0Fid5FIEO55cj6fzTGig13VBk5oMAgPn8vSfApkLulvnDqoJPlZmcd9dwAc4TEhTu+fGhlsmJ
3joFYRy5TUI/HMj3aZ5njKRhZwtm3c3/QhwhyBYr7H0oOUTZEjwaxN+o8/SFfzrsWoeS5LlLS0eS7tCL
Eti0hA+mfedESoFhVb1LkCkyZMlmdL2OyNCXtqh0HMtUSQ2LSRCoEMGslrEsRC9uVgvazXj8JVLHk/IM
zcq+x2ovsn76/ZDa3Rgsw7D6bVy7Y8h5sGVrtLUtOrHE1GLwekjVRpB2WpWCw7WNwjexpjegVOGBfeeR
VxfLZX8i0N3mxoMEpF9OOHmZrSZsU3E722sgu/sG7qQmJnpF6kz7jHO7IaJUzjxVPrX73RbMlhXDb28T
RKyZ6JV1/aMvpuzX+fyILQ/N11hdjjq35ScUJonC/R/f9WbeXymhNEaDdAmF9SpwpYaxGQplA4Ee42W6
kymVX+nX9sDf2pmc3PRAD9IBYjYec9yzsgmM7G022zIvj0MPtEQZaNrSACxo9kwEhGj9EXZNRJdPobdG
lR+ZshAp1vMTIEHft9AasJ98JC/aC3S0q2q+A1D7fM5n4Yr+rvzVh9UhLuOfxrlmj6y3hfiIJ8DKPVgb
uX8hm/CkIGfEBuKGEoEPMtT3JPOq1dOgqKGNubm+n8wUWb7WHyK9NXq/6A8VaBsQz4rz9w8zpYrBMkVy
vEBl0aVlLlPcVmY167+a8EE3EWCOUREP2eDlw+hZK2YhuGrzrY9wSJrZ4HVkSgDGDB7b8rBTQwbB+L6g
iXQDIe4xRtCvVK2Icw6bb8lTCoisRzOXkAo0kOG6wuZz5tRtPjlYZWFa6x3beHX2g/ydKHFPwMy5YGMK
VUF6YYidFW9300s5UztwJaNekO+MM19AkYdPbCz0HL9LBLJZFgINeeipKZSVB42PW+HzCltP8yEozf6f
xVRBVPsS3bZr4E3f0HzFoyp6t+B0xl3qIlSWHwG3yQx0VokMOCTscuKagtbBbpYRf7cxCbsyhKsC7EQs
glUAAV93kPOaEf+TvelQUO8QfaNT2XPLPFV7kPjgo6x1oOSt+j6vhwsLbpKRjzoQwehhH6CNoWfD5xWX
NxUsT2AbYuA200RVKs+yeejWuOyi8MNpoG6vOViKNdorQLf26Mp5v8qgXnmxIZR91g2sS2u4QNmJktMj
KH6zvaYwIKLOikU5H7ticRL5ew/kf16EANyLHSj9Ib9DbJ39HaraeazTaAB0+vnkpW/y90wOQ9fXHVAw
EhBgnlIc/TVDOlGF0fPItJhLh2fwkal4dbj4cskVwmK5viVO9r8whADqX2eR86zD0MI24Z/QTevyU1Oh
oSFtx9hYqRf0FWMMB/sfKFcTRg44VT7+fptefefhwn802Miv5uqmfc0UCkI4x4MyVuqCXrs0skEfj4kr
2O9WBOQ+CFRHvKwnZFUqSCo0kH8BFlKlTlHdbMyhYgaXrXtJND3EWOxjePpb+W49FZ2frnwJgc1pBak7
dY7y7ESZpq2Bb22zO2WbKvxuBGJ5z/AnWwsYMLFekd0f6FYCUXYS0khRS8r8VE2QFEkPcDpRo6dfIjgm
MznGGCv0TjIB9cp2TaqYMqc7uF/LouljkEeMS18bsI3H8ZmvkT7UUbz8dLNsa79Dw4ACZkfNFBHKs8EV
GqbG2aW6xjP+glXkG+xClHCrgEZmUjQMDU/iQKLfqQ47L5ReVFfJiFoX1Ydi4R85qXRWpIlrWV9zRIfV
OxSBsDULUclYsYUV/icJuU83Q7P1hH6Va+NIP1k2lLZKnKaVcL57b5mY1R7HDPTn0kHBDXF2oK2RigFv
GJLNMmKaohNKdbUa8wwEpA/garevUfxNvmuQ3SMNM+GvcK2mZ0RcqbxmBshrt66eKQLnUzbeS5WoyjcO
/izWo2baT92ji/inooAISVjpAcnbu1N5JRuOCCTvLByPLm/bKrwU0YrY7qY51U3SnO+u/U4LXpz0Ag7p
Y20H7yr1qSQTaPKNiS2YwmQqx1yz4pzmAXGb+a0zc46G6Q2V+1kQhwchvQsB7bLQFj7DbtTr2UJ8MDND
5m3+yGqvQbNwblHLnmVi8R65lq7PP+ScLMjYp1yClh8O3W0csJ4lJQl2ityE50C5JNPfM2waUdwcsEcj
tEWxx+P3xIdu58V/NwjmTP42KySHaSoL4TOOyZ9xoip2S1d4P/6Ct7b8cfc0AxDaWRdZ2Wd/cdfSV7Mr
ExSFDkrYauTYnQu931OpbdEJhIBE/TZR13wgJRYNHDbvF8c0RDSEtYfUGTd6q7j3eX9iLdibGr/J11eV
xVIakeIoXdCxsfAgODgre/L+C1nmcJgsTUyyfFqKRpgn2MvzkAXa6+jNmkO/Xv0lgcBOKs8mZrrfgheq
eDJZunsjL52x4nhZstVQR2lNH+KePoqMn0htzl9tVZypY9YmN4tbKVcCj+Ltxg32e9DWR37Cc16T8nKi
z06jW+kuZO0RbM0V1Cc9GpPWL6+/aMEi6s2Jj04yTIg7ohQ53sw+AHPsOS1/mLe20xI+t4iLYjos0LF9
9eCK6culzP/+FWM+IisYnZBa63du5Gy4egrqo28Y1/oCPGaT8PsJIzcJ/fRORTHmazgSEMj/obH8RqS8
sJ0MQY2jWgI/+UTjk3WOPyjyE01xSBzEWFzQQQDJGOQr/MYJHWGn12xomDZ5zbRqaseEO7jC40klqpYR
04fnHqJW5GhkQL/XvcnCQ7BGH0JqvgTDtYyw9bwQDWiL3o0rmFkruwiKCuuXhMT5OLfelrvLylSbA9OP
+8Bilx7tjAfX9wPZDNkbNrZtivvIvzLRJq5Bq5kCmTReJ6FdcgxLMGMcNWJmHDhNBlkedhtKEVnQ/roJ
y+5wzyrJSH6Je1gY9VkkJ5VgWtw+Ag+nCECYVUtwXPfUrMS4wO2XFt47mPYLGoZBzJyxDKAej8SdZngI
rbposzZ6UURFwCtD4PGAmWLxk0houfuhmLWWfIIy+oHW9JMz1FLwM4/RTsLnCinh9j1bCZnBUW97O4rt
byaE8vDswQykMraZDs828pCs9ZWILJyqML86+jkHYBe+yM/3MmPQgqhmKpqdQWcnVnuXWAywshdERgK4
99FbiKqGTfYcjOBh3BxTaHv9BBlKY40i95hRmuAds3uEXG13MMmBaYaMe6pSOHTTwSC+hgjOQRp/rftR
2pLf9NYabRdg2ANhzKQbeHZ8gHQUQ+Ef0gb3S0jMDsIng9A6fJ8l4OtMkhxwmHTGTXRprvVkUQbNmTcF
w1K0/gS9KfRHoP0ub43bT/phaapzt1N1xyNyhOIqUbAKFRIDKv/PRSr4aNw/cpVKCT3St9jSYhPiOU6H
QqCKuaATHDqjmbGsCPiq/cWUSPWyI2Nu0V0U2aX5N/8Oc+GdXZC4F23kMFYxd9CiNKd1zEdjoRAYAbOe
vWyVKt1h6eKpyhGbLlxD0U8pQ5HMam2YDUFcuADrpU3iOzyABvUW2+pX28PqKcd9lnVP7vLuZkIA6Nbc
8QUetOb2lEHpgcyPoLB6ZziY88qFeGXJvAvk9xr27UtnW0FlwF6P3HD/06HW4hOQEbidXYKlftFKGdly
7N3QfQgdPMLZ9haCS7WAWJ5i3FwXro05J29RKeWCPwqaV80JzC7aO1lhP6BET/s7/JWfJmtvs74tJH0L
sRkOJOZJCVQloaUHs+tWIgQGqNPoObeJS+tGxZ0k/PbGHrU35e4n9Ofx+WCk/xbJ7X3U8s27uKe12OgN
xlfUbWZrsD0bnPop+Fr1YO84MNt9fz707H9J7X4QmUDVWEV44xT9d73G1z+JGhAfQIX9gIkZHt1KCvL2
gjRqzN1yMo0zO9XmRgXXXpixCFLqaynn+WhSygiVPpBLyH+V7L0k+osisHq9isQ8OpYVWDDXq5+SLnz7
VS2jMjgpIXWAX6axUWKrdIiBeySMxNOV8WSKZYHThl62BSg8VwElLm+ejQwutCUMyYMnwnvxxX1RSsZf
5poQOz37Ko7Hwe1cMla1XXXctlDfBGVrfCKZF3MbniIUXQd7ClaWiAPfBSsYiiDhS1CVPWZjS9xRRG6g
ru9omHqB/079tDX4TxU3ioWkVnRdbfAsOE7kvpfDw8+ggCUCb8LqnJYg7bmHBvi3Jb43c986kuiJ43+N
I+IyO/T+5vZ4fp3VXAaRVrrj7eoDpvGo0NjRJrTfJQTlnDytJSxlf3BgRFkWp8OlvW5WB+FDf/5LB2FP
PlkT/sAwDasClTiTTxDIVE3P2IbAz/h7VMvykaKJeMIuiEUFX4araKDx17iqCeTRIgQLCIV6c7ea99L0
T/+3g0R1QdSWM9S9eAkpWA+gEAdWtHsULIXVTRuFgFde8ryaeBQvFV/gchkGTBhJJ1AWbVrQUpxRESHg
UQUKyinLtqrwOhKSIKqy5YRzIDuHTcGuaGmran9w236SxWuC8iNkyu4JzPY4kqb6zfOCtV84krlefPRp
VmEF/VBMnfQBcskvztBB7pLFMXzyVE5t5vW0Em1a2aKZBhV4Ui10jtpPDuvq838pW6+TUQJY2wY3OKRS
1vczs0PelHl6hofgKLZvL82LpL66dNMKqx/hKz5c7tZN2oITNfoTBNyfpdb8Eaj2BBK6NcvA+eQrZK8S
BMJGKcmYB7ZyVxulNaUzKURHBbTl8dGjWEgnJklxmVwKHQNgTk4dNnJhG+MGdKXHoDWXS1rvTTvWx8LH
QFMR8qRGcT7JnSm5s+OQkVIfQIPIcj7N33ww/cAWXMB63srgL/iq3tlD9iJFNXc2UP8WeeAGrYmdFTs/
cuOQXJ3vvtfxLLthg9IYoz8+asKRqvf5l4FERB0peplfC4nsExXO9x5woBZx7FSeXZ5kJgnoQS+ebs4B
yvKJDELulbM8f6iFduieGN+0ZMWdwnZrJoAghdSDiiM/npBWQYK8gup6AHIJ4zT4aEBJgyQFpbRBkA8k
ertn45aiWnDWjQ4m3ACtwM86Rvi8DSjMvOjJqnRtunxuhDJt+++pw/Cd6oFp5lEsfwNp6lKHX77u3q/x
97Ipx3XaXX4+e/f54DBk9+PMyjSIeHr1WGYvKnuyrxmJ6XY/Rw4bqLnR742tVTQnu9+xMfuNNf+x/XYB
IpkFp1P4SOFWBCo2FIF9AVS+3u9AMJeU2vzYhLgNLuu+VkEhYOpWK6JWNuiTnXPETAIRq1PxY1HtTtV0
2GEe1Oq23lTp0aF9NYiw+sTAUAJaiwQMCghd3JNGBh0Nr8eDo0qDuK56AiTmNrAH+s06zg103YiUj97T
0CiZOVaWSM4QYbz/xZj4bvJkbMNH5xShuiwUNqI8mE8VfoaMTwnLrEBuIoPjXT5MhEZEhK10x3HYzR4X
eOL666r6hEZKhHV432qdA/Vg1qoclbmD2fjE3Auv0W9XGjFShKsazbPCKLvZ+T+7SegfRQ0M6+8JCtng
6peywKBLKSP1xj3+MIyq60Jpb0e5F0PKi/iEqbEFGodyfnfWaF0Ii0nOnjNC6zsTVkncSqHLQlAVlRAa
WUBFm3w3xaRl4X4jFPNvG/j+EjLskqZNYBlAYQUxjJzQUw1AUlYBg3orykbInz5QafZLWtTmUOTX7QzU
x4OSjavCk6NZqJkDZObrofh5d0YR8n7GcF7Ujg+lJ4WfVXuG2/O+znsfg68mVrQfX+1u/80VwJZk8PPL
l534KtDtNliM/PmYwTlUh5cnkXR4+UOj6fAv9IXtwUxhLexlaTr401r6KPpVl1IeYGJwwpTa8vPwQ0ZT
IWjZ0OHvQ9VY19IUu14tyTiD09/JPwI+sQWgde/8XeuVtDk1FZFMjki33c40vwpL+3k63Dv2dnAkB/6J
idfsER9Ck6c0KZlCY3AdNx3WSiYI6MhnoHf3ZwCg7rVKdZ+rUFK1eQTsJQjiDsCIZXWCEryuUrMloLz+
EvFemlVYGeGxvGBrtjg3Kf+bT2CwKQbxTDuA5nb0kFQU87GdmwP/zKXtrWRES1UPu9TC19f6W0H44lnl
m1dN91ZFzHMQT4oadccTcCs4zt1F0/0+BcaGOG69WHHkUZPpBEqDYXW6d47qQDPiFyoigx3xn1+cS0cC
a1geCRGWukpYrkFmlY3LDIdzlenlmzP+6Cjit1cEatAVIC7Xtcm82YFF8SSgO6y6+RGgdyIh+CRtE3vg
PWHImarFwxlLf7bjJHhTn4SKgYLKlyJjgoUrKjjRNzdWXpkX8vfFkOVmh0AMj+yySf1ZndH4BPSLVbIQ
2C7y/Vttt1EO/a149uPpvUTAsBbv4zQ+y7Nwoo1M2kDYtmLodJvmtAMKFSSjiGuDWg73Fh9XhtxOW8f3
+JEKTh61mTv2NyCAA/jiA2MXk25YS2JbMU9qE0WQeWPOWUrNX/B3e7+mIUPn4RMRW5SaJn5awYPPGBOI
DliNXDAfWUWeoj0YEx6O+a3d88iWKObSvADlKuQtNv5OgQP11wgh9KniAWDGnXBjwHDd8ZbycIVbi83x
u1i0LBj8bkNfPnSCgKrNxMxzHI6IrkbFXmUDfYk1hTn9npy9zdM6g2wEzrqcjrsP/z1cqLySePuWhrvG
wUvlj2PDhdVOlIO20Z1/vXSYEWHKTXwdhRr9bZXwS3nsNgmYwKdS0GRW3SPb8qzw+VMW9Ap2+1c204Fb
/VW+b3pBusuhZyBHPRDrABf4Bns3bCeGMQ/2a3XBolhUiDFn1dPLuXJpAhXxtKz950x0o0+TBS4zXW1I
RTtxlbHSksETi3ETTlYUvCNURBuRMHJdC5gheuLgmMz4jYPDkuoOiFaE86ey9ZHfURem3ecRtiNNCPaX
td7rqE8nmfUexmwq0Xv6oUqWxwMDf0HVep6lbssKe0oFBePwycl51xmyXGX4oQaTRnmGvuXF1iTXDYWz
6tfCIXCg+8qZjsnrIjgLH7DJKM0LibV2/HIIfl0Fck++clImNu4FBJ3O9hGRMzdfc8x12LKfiI5bVqP9
ZHsJpci9F6pVciydPosrxmsJCojJbxaxKS1Qr06BlR/5jwiA46UKDqPBzTWBJvorQsO642VHcDvedUFo
D10WlkARB9Boj1WO1QAsPEe7j47Im+sMcpk9xLg0Ulv89jg0pgDrEqNYYH7+fjb+I63w9P3n5+NQk0/0
EeHkKgIQ64Fs8r0VqUH8+/EA8YDHJMmgA5OhRpAVPwopykl4WJYB202r2sqL7VN70dHO9UUu7unJQrZp
naup/oJeyrZoC6ZdJLhnA5RKVsQBSb12e718F7Of1qjqq3KKxwXSOtxsqyoaoYWbt35ZPniS66DwI/by
owrY0u6hAyQ7pHx6nX26Wtu5qKyB/eHhJ8IJGSTryKYsd80u4OuZdL7cO9Bx1X7DQcU8xqJDWFAVzuJV
lFE51Z8KG0xixUSXE4rYuu1NcGwbfgmLLINsG7R+Ej6WRNGiDWDo6w8kw1TdHb6rkJ5qjn05dVQdu6jL
CLKawBqwrjci5L68o2+4T1xsBrrgSMg63WqMQI3hQ1Cx7PNmXQbm5m4v3nPjM3fvKXFo/mM0iJKFQZM3
Q6b1yY6E1X8oKDGqni2JDEvFIkRfkCzxvxCqh2xb/hWXv3ZvLS1LVLCDTrnrsbQ5dJd3U5bauvqAkMpL
6fadEVQPSngznif26/fjvyGIsq9RGfI4qO6jItZmGWwCa40iEdd2zFUQfOhi+nz4JBQMxm6jBepcUcwb
uqJ6iBoC7pTkssOm7WAyQLa34el4zLXR4MeDcCAPDkIdTNdiN6ouVLgVLlUL8lGWgl5lORgwhtEb2fuG
QPMmM4OSu2tSA0c+GTSG3cWmmWAXg6Oh107XBK4TgnLTdOIPMm2NBzQJcj7kJqhF4Tpb5XgOVrb/ZS2m
b7jy/I6ZrVEBHwmIdXSdfDOImB9BtHuUu6y4wXZfu8Sp/7Ys+q9yLS31MhMYkXsme1WpQz0pdPcDiB3H
LA8tz3/S0hIE2vzk8Q/ba5G370AV1Mg6/yD7m11nopWKRMA9xkvRfW+43Ddepl8/fZXJpHgRJBMcod7/
T61jEF/N3SO135FVxPUKo8+wi4kPXFQrjKmuuPv6JKM0/Z6z6OT2cWN5fkeW+cqzLzn1FGyvdTvtkBdt
ME0bppp2xF3A7pLjaU2H/5GbUD1ag+Zk/YdBc/rWmPiLkEkdj1Cyk9fW4GV3IRyy5PHsTLSUrbvgrY87
mQwUBwBsiZhdAUxbqngbGvLhNEeJm/WWE80rkFjmhvuouaS+i+2w6fMZokbca5jXZtd8lsEyxHtYk+YD
WcuXj2wtEfur8nYYRw3US1Ke1Pm/m/V10YYSCuVQWH9TVEFH38BOeaESNckNsx7M1uYZBZkVIFKkpRlz
r6BDJzbT+y5YiKjaJgBKw52okYt8EoLvMOz308Ni37VD2fMmAMosTItHrWLwW7LD9iUPV+cug68LbN/I
DQXAHrQ5a2ewoHDqJGC4lWaOjGSLc+SMUlGF/FCnhqETlwWilzBT9BK8v6sL90E1njXaeHZdtYVuv26q
Ff0lj4gNCwB15RmWzlJcOv3saeE989bN13QZy3mt3Tqhxg71xoY5dI5J0Hf6rba2ZXZfFCvMSK3X/q+S
qyCoVEMlPPH2AO8OTF33v7bondaBfdTfAKxJb4XXEljZf9KUgxYuh9B+w1HydlP+MNLxAe9X3c5570UA
Hy78ZzY1+kCkrX3IIq+2bRS3+qtC6fybdS3eJBjQKUuRPAd0c/Am4B84H67VbfKlFQ809cqHQJuzrLr7
7q9/gqbqKl5KS3ukvbEx0AWFvT9JkK0oy6Gka0I/ng/4kYLLDb0oYUYKPPSH6GaOXjVwAv26mQ3AGlvd
q2SpxWpecwr26de1ghQN5Ef6kO7phSNUGa7PSnhwjAM0YJIyZASrG0xBDg6GuotMfNSd58Z0FwR/aTzO
bCpp5BESLFXoEJVaRFjTIMIGxDWs+VZYp0/uoMOyLktlKtSimbTeJi9gmLQvV/zD3cj7EESk0OhgONJH
A0gVgMsx66VkWtRbmwPpibwOQigcu3+BxVwEFufeIVQjYhStfu6WkTygrSp4vXVMf0No0TNRqT0uoiNG
6PZIwjPzcqeQKI1/DWJZNij+hxI4Ukdk0Z57S9sIIAWgoHP+68JFnMY15oZ07mP/vrZOUDnFVuKsl+Zh
ESe5pN9b6zip2ncfnk0WwIMPhduBNkTLrAmEE+7+57UjTt4kxiksdr0ZmPRV1IqSjCLAqm6rKkZ31OiY
iaw+NcftRMIBFazNyE8BesRTEBY1Ol84Jp4YErJ0uvLpUVtObUtVO2G3PCvlqCXp96TCtNKzDZNsLjnF
/NzTyLQqpho9L7g3qZjBjeSs5/pf9un3/sYcsEmxCEDFYlKd7J+rKStVWpdIWwFPZamHbEGYiufIKKvs
X6Sj/umaMSV4zQKGGyDUacJJZHicJJb7C6C+NafsdFfP1n1b1i/8kg+rX3Gs0PrPEZE9AtqTUZHGSye6
rus/ZtyDZ9StYMO3qXkH0oZsDVVEZ71XbT0LSeku4c/AOpDcssJpClvMKT+luCTFzRofTWMc5Aa60NRj
xrjQS8jqyOtn1idyEyVB4KrBcG4131VkR8vWEE8MHPl4/nEI2BdtAO0KgdtsMotvD4qMKpI1WtmXUA/A
fxL8FLHLQrZfS/3cdLmWIlQo9X+A2GPdRhcWCWlKa2GZZZAzXGWXCRqU0sfq3ozUXTriGWBg3jWlrNKg
SqlfvGfXiMIn8qweoLdDagf5/1M5S9DJosSqjKTt+imkn+GrK4BAJWVDil6cn5rgfNfJUgp9Lijc3lCt
qGTApOcoqjvE43x4Z4A52W18pCSXbxW2uttaj+divO+3Hc0/CtedK51x8k0F9uN1wqsbMuYO0Jtj9qs3
d0EnjhcV08H5EYe1X50M0JTjsJmvJevalgSy24lbI6xuRAwZGGkpM/dX9J6WMkql9Mitd7/tpdgjK/Sg
PdeHiF7A+ZceHN+2J9sFRaHY1s5GrTVXpL4XOOfC36EwNIFXEJBVfv+x0gJ57AFWyop7t4IcQ3yp1vmW
XA2kTakVSEu7fx7L81Dxbh0b3uw7HvhbTL+soSDPArq7QHfJG7VgLWPDtViJhUGmDLE4YlDqh5zQu6I/
38H8BigT6LGL8IDVU+ilB+PU6DFWPxqO5/liPH3teEoaFdxjbv5i02RJ5PiXQQCCpAzmeEPVbVweYCGX
3d59o55w1yQFxvofKNWhKMxNS9hHRJOSIOe5vQnyCgIVfF3kqPrG15V8XKAHlYbRuA1ewmwLcl3g1ojd
2igDLQ5JABMb1Dct7gP0SfQ5Fmqta/1EZy7aUQHQdOpNPDoD4CAGdkAtNEF/SabfjMQdV/hFmbSFhTTy
kcCJbX41w/TeSJNcz3LXdBMZn1YR5XJCo/lR+JpJwvKnzqDBFvwiegFp3IsWue78fT7ppEPngrzM0Qwr
yFKEwZPHdWsO30xRJ1LUPgnzcist8JZXgCcbxBysa3eYYs0vGnqfGS4mPTwd7aa/3PgtEimOo1Om4gbm
hm5xq6xD65/83R2Jon2cxSLoUVjeVWde5aprdG5DJVKUUcFBf5zsWXNx5Q1nTfYlohd/kgeKkWqqRx/L
HQsq7IAfsj5T70jtMmihzInuT3sGqlC5PshRpMELpKFg5INjacbYWzBH3FblexYqXeax3oy7jaKQ+9t7
U5wssZcGnzxbLx2YQ5a9TA3wbIciYr1bTIy9h3n7VpRDDT8lvJoLhLiXK+3k/yjTyIMprOwblMdXgTr5
Z3Rw8j+OQl1lDdmGLdjLy9zI32lKxbDn2R58UJAwsSPlea9o1a7tL62sLLmVyBud4XucKtpjkJMBWVQc
r/bDWxSav/s3MSAVBcFMxgqJV7CGsHsjjHq7PUVEXk3usbyzvy0QfGnYLaMdUit6iWZbCHHtbOsv0KOZ
7fIVblG2VggAeRfm4Az3/hm9FD0KRuSguIgcHI/feClPunJaTvhhRIr6JxY50Fk3dqc2acmsLokjbv+b
R7j2P7j0aEM/2GpC93l4t/vFbrGP59KQPDjfFRwn5tLrAiJElxieYXCRQkLx1M6pCX9azi3wxR+4YD7q
vT8Vsv8L+/Jl9/TWR1WmBbG9hQwUxjiew1yLjz3UkYhXHLyPO+jkjtdwEzJ1bzHbWn5BsNKERCPIlO9T
KECtlo/YN3sXCixoJMAnAh2wuRAPCvTqIkX3Cl3Spd+OVFi1T5keUGRtx0sRLsz6IxRiZbGE1yrrZkCU
va928r38KXURtKVegm1Je/nEIcmwdg85SDQHcWTxd+THf+M/SFEZAtApEnC6eiLZ+/W6oNQ0wpdKM7j2
dWk5Y719Dk74BiprW41AQCTO/DEpy/KGD1NN2IUwuOLDvAsn8AxPeS7zXWpzVO0PT1ILkKLc3sTH/Nzu
7WalHUxC67BhxUN30sf7WORVuDvM00e/5wY46WZ/lCJSQlX1HEiWX8KaSGZyNEAs2lis3ZxA3dAuo4dq
/zVYBw0LmHWRgIJ+RCcHkliSl5kNHf64oS1M19ji+FO1DglyO8o33Gx2XZtX9pEG01lYVhWW8ycuvWze
RDbPWOsRM8lqqEoYvcs6NCJqDUMPX5dOn64JkP45dIsKtKQNa/b27mb7KZCvf0SeFw6ZnkkBCCeYgBXe
e4Y+Vdwm7Fg7Cf3GHT5+LpXfCY3kpPNe2tCa717/50QNngDUvJx9YR8JjJGBn2WN+ZhGYEjjkdqcVQ30
+hTxuWO3ZlVNXhTs0xsv6IGOZ+AbaeMrXjsdXnDcBvNwt3wbuZzEuOIRgZU4J94UrF3I9srDDoCgeEd4
2KUHjCI9QMzmpwZxayO1CptwkAiVN7dPynaqAXZ/AgEkFMp/bKqDcCm771oPyfsEUKdZKaeJc4BySOtx
vRhFs+otmCFYoDUeHVBVlzGSfUfuH1XcvDE+hkKQjFkPvi0Vqf7MD8aebn7RQpo6XK67ee1e1qBe2qL4
+RaU8FPzUnZE/hiL1i0W3o/TBGWLBWYKHc8Eyg1Zxd9bFi4AHBGc+Iq5INknx5Qzov+9LI5t3hoMIHme
MA8R5zrmBCqDGrGqt4v412ZfnfK8L9SyGSC64xK64A2ysTp6gdQ5o9oQo1ySbSB+YunO0s0miQ3s854x
YYHGG94IHdMY9bx6rkq6FoSm6l+yT1PaQE4Ous0nO611zsQk7IykklzTY+JKp4tFMwZyfUvkDaDc77N1
crTeupq/7ubhrRypGn7oTgAAnXQw+5ped4oF33nmOWXY1h0MDEnYExwaGCDcWgYyRD5gv6baO06pz5R5
sx2j+6hKZLXSwWuqJiZBEdfvy6DDQ/dCEP/qo0hQxdmDq4wmGrPPa0L5tcCm8XLW4g0k4q9LKfh2plr3
LJulmrcSNlVF0EFXnj5KoRFRECXQOtTzaM1uKZuUv5MzLmYisGXeP5tCTx8pOxjaKh67geQVUUGC5+dR
1XIYSHFhSXdSjERcEB3JDd1HZmTTIDUuIENft7ja9nSc5c2S8qufIZ68W/zRjIYddhqr6ZyG11lEQgcm
Vwq9WiFBobGLl5zbHQDf6DEn9a5xUS7q7i24rzICrDbWm2pr5NQfGRz026PIfuvLYFFDnTYVXXBK6wuO
PYNjng1PgGnXc/C8sqt3Fxx5l2nRn2V6vZAvio9mnuOliPdbBcvEH/yCqC4n99cics92x9o1SdclXBxG
LEgZMYsLxNTmts0YNH8FoIJHekrD4pFGOTRZEqkC2S9dIEb9H88yT+PgQTv4hnEymGp7GphhBSjwNcah
Vz32bDY2+U7Mb9EOJM1GskLg+UmIDtejH1+lgrfo4eB008JRVdjBWttaBtF1qsB9id8HdL+a5SsBnIpI
14SOYar9t1DBzoWIxgbzWGrz0lK2I4DEbo5o6Z8J4Nsy1z9Gz9TYYtPGZMmbQYL6XuAenF6FjW+JN4CT
572xwdCS+pfyW/3uq5goA1IL6HB7auoEdh77IZ85/HW2aqpf5O1M/YnseciO2zFmk76DT0zHqJljv9ln
+k+uB85ktchnGo84eb5+SbLdzKG3YInfvqPot5Re4i4dnGxAlUQ2609N0zjy0lwKOu1lY/h++9KpNQeO
3qtX1Rmvjv0Ml1rapymyWYSMiWUWRk19H7/RUOgJAABLAwAADgAAABoDAF/ofDYvccKg8v2Yz7qhfjIX
Asc59tZoJBbbpn5Ou4SW1eL4jlmx/9wQxMbExlCb/txaKi5Z7bBt/j/6yhEFJ1AkZDiHM86uleNiiq5k
R0heYfz/1U4SXAK48rNxt0wMW6MaiYSbqr0wK0zcoF2Owz65+gVL7oeNeemiAurcLGYbpl4VSMJJYBRR
39yTgiUDZkVGNgmJyofo4X8Y8ukEycNDIOJaGB6YgTJdk7CRHCGk26TzH+AU1YFXESC6dDYF42XaJXzJ
VrYvgjlQ65EEHIGcib5P0B+KvSlv7m5EsqXyZsN1yBJ9oC1N/GKh7dlEod6HRROR3Lu1b8hqNF4vFP8J
McmOMBWCJVf33bl4MO5cV4cvbyA+LzACjcFf7IFfPRwy90p+wdEIeQ5Tq0fQTDYZiI+woNmEBLlAvOVC
KPTrNpoWaxFbr/TZOe9EMp7ZAQsYEPPklGimg2ngXWtIOnoOPhoWIaT4v7lwfQigDevx+Au+8iDBXUd5
p2nbuq3Yo623qh3e0fz2ipoiQFDU06xrGQxH/Ckq3jiOChnFAcyIwyQWDF8xSszTqjMh5fcpj8Pn/sAU
/G2iP+5bJLqiNAmdwf4IcndN5VR2xqsXzBSddNs0i45nOcjdWaOY46t5O1bmogxNCtPzcpAYwOmJjhXj
9/77rj6pcA2vHJIvAk+YO7oKOnCtljzVnEg3XLT8unAB+x/eLleCrkvH4OpGkbC9dmnandIWbdNN8caF
y8zu2DouUPGJpMDaowY3w1fUjuMSrUROcamsTLW7J0ccC37JJlpsxGl9l3yvaF5YUjRUwoIJjOPgFJhx
VZAtQKFrxaOZwj9iUV3Qi5Gp3zaGOp6UH+GeXaJFMz5jy4Hir7Cc4EwF1KuzPf+kJM7AK/jxCLrdk41o
bUdS9dwfORZKdvDLFnNMlg0Zh9fBbbs5C25HArSVtr+b98vuT9d7aru2DvheBhUBboox00HhYEK8YPmR
q6WuFTbyGUASgD6sioeeOVLXABOs/VBBzhRm6x1F8+Gv+NEoDE2+atFOkbFigUO2SmF6aLCTU0T0HlFB
O/S1wpe90xX+4pcRInxJ3ZnbLsEMj84k3V8DHQRlJJhX+lbnjKufdvqfDWAFAAD9AAAADgAAABoDAABq
ftYhOECiVJix9yWnm6KRXBbfU8BTjMgiIKUFg5ipbm9URrsQtBnaGs7LQH3b70abzcNym9S6FfzvuNME
dMwUgb/ll5V7Zftu3b1Ziqwct5Qb1pKJGQkTX+yc2Ca6y7fIyztTofXZ1QAJIel+kqwWW6vG0cH2rOp5
NKgjimGDpdnAt+eS9aPgs2wxRQ1ZYvmZ0z7WDFQVjwRebC0v2z1yO30zHlXGIUgeAeG3lSCBO7xMfWal
H4XZ5EimmxfgweiIhYlJO1NplfsSyl68goBOTueax3qTFabxcaNo/MSvjmZuEsQWpqXOpj6iaNz7sJi1
K1NO4rbGYgsAAAAAAAEAABxOAABQUujtCwAAVVNRUkgB/lZBgPgOD4VnCgAAVUiJ5USLCUmJ0EiJ8kiN
dwJWigf/yojBJAfA6QNIx8MA/f//SNPjiMFIjZxciPH//0iD48BqAEg53HX5U0iNewiKTv//yohHAojI
wOkEiE8BJA+IB0iNT/xQQVdIjUcERTH/QVZBvgEAAABBVUUx7UFUVVNIiUwk8EiJRCTYuAEAAABIiXQk
+EyJRCToicNEiUwk5A+2TwLT44nZSItcJDj/yYlMJNQPtk8B0+BIi0wk8P/IiUQk0A+2B8cBAAAAAMdE
JMgAAAAAx0QkxAEAAADHRCTAAQAAAMdEJLwBAAAAxwMAAAAAiUQkzA+2TwEBwbgAAwAA0+AxyY24NgcA
AEE5/3MTSItcJNiJyP/BOflmxwRDAATr60iLfCT4idBFMdJBg8v/MdJJifxJAcRMOecPhO8IAAAPtgdB
weII/8JI/8dBCcKD+gR+40Q7fCTkD4PaCAAAi0Qk1EhjXCTISItUJNhEIfiJRCS4SGNsJLhIidhIweAE
SAHoQYH7////AEyNDEJ3Gkw55w+ElggAAA+2B0HB4ghBweMISP/HQQnCQQ+3EUSJ2MHoCw+3yg+vwUE5
wg+DxQEAAEGJw7gACAAASItcJNgpyA+2TCTMvgEAAADB+AWNBAJBD7bVZkGJAYtEJNBEIfjT4LkIAAAA
K0wkzNP6AdBpwAADAACDfCTIBonATI2MQ2wOAAAPjrgAAABIi1Qk6ESJ+EQp8A+2LAIB7Uhj1onrgeMA
AQAAQYH7////AEhjw0mNBEFMjQRQdxpMOecPhNsHAAAPtgdBweIIQcHjCEj/x0EJwkEPt5AAAgAARInY
wegLD7fKD6/BQTnCcyBBicO4AAgAAAH2KcjB+AWF240EAmZBiYAAAgAAdCHrLUEpw0EpwonQZsHoBY10
NgFmKcKF22ZBiZAAAgAAdA6B/v8AAAAPjmH////reIH+/wAAAH9wSGPGQYH7////AE2NBEF3Gkw55w+E
QwcAAA+2B0HB4ghBweMISP/HQQnCQQ+3EESJ2MHoCw+3yg+vwUE5wnMYQYnDuAAIAAAB9inIwfgFjQQC
ZkGJAOuhQSnDQSnCidBmwegFjXQ2AWYpwmZBiRDriEiLTCToRIn4Qf/HQYn1QIg0AYN8JMgDfw3HRCTI
AAAAAOmmBgAAi1QkyItEJMiD6gOD6AaDfCTICQ9P0IlUJMjphwYAAEEpw0EpwonQZsHoBWYpwkiLRCTY
QYH7////AGZBiRFIjTRYdxpMOecPhHkGAAAPtgdBweIIQcHjCEj/x0EJwg+3loABAABEidjB6AsPt8oP
r8FBOcJzTkGJw7gACAAATItMJNgpyItMJMREiXQkxMH4BY0EAotUJMCJTCTAZomGgAEAADHAg3wkyAaJ
VCS8D5/ASYHBZAYAAI0EQIlEJMjpVAIAAEEpw0EpwonQZsHoBWYpwkGB+////wBmiZaAAQAAdxpMOecP
hNoFAAAPtgdBweIIQcHjCEj/x0EJwg+3lpgBAABEidjB6AsPt8oPr8FBOcIPg9AAAABBuAAIAABBicNI
weMFRInAKcjB+AWNBAJmiYaYAQAASItEJNhIAdhBgfv///8ASI00aHcaTDnnD4RwBQAAD7YHQcHiCEHB
4whI/8dBCcIPt5bgAQAARInYwegLD7fKD6/BQTnCc09BKchBicNBwfgFRYX/Qo0EAmaJhuABAAAPhCkF
AAAxwIN8JMgGSItcJOgPn8CNRAAJiUQkyESJ+EQp8EQPtiwDRIn4Qf/HRIgsA+nYBAAAQSnDQSnCidBm
wegFZinCZomW4AEAAOkRAQAAQSnDQSnCidBmwegFZinCQYH7////AGaJlpgBAAB3Gkw55w+EtQQAAA+2
B0HB4ghBweMISP/HQQnCD7eWsAEAAESJ2MHoCw+3yg+vwUE5wnMgQYnDuAAIAAApyMH4BY0EAmaJhrAB
AACLRCTE6ZgAAABBKcNBKcKJ0GbB6AVmKcJBgfv///8AZomWsAEAAHcaTDnnD4REBAAAD7YHQcHiCEHB
4whI/8dBCcIPt5bIAQAARInYwegLD7fKD6/BQTnCcx1BicO4AAgAACnIwfgFjQQCZomGyAEAAItEJMDr
IkEpw0EpwonQZsHoBWYpwotEJLxmiZbIAQAAi1QkwIlUJLyLTCTEiUwkwESJdCTEQYnGMcCDfCTIBkyL
TCTYD5/ASYHBaAoAAI1EQAiJRCTIQYH7////AHcaTDnnD4ScAwAAD7YHQcHiCEHB4whI/8dBCcJBD7cR
RInYwegLD7fKD6/BQTnCcydBicO4AAgAAEUx7SnIwfgFjQQCZkGJAUhjRCS4SMHgBE2NRAEE63hBKcNB
KcKJ0GbB6AVmKcJBgfv///8AZkGJEXcaTDnnD4QqAwAAD7YHQcHiCEHB4whI/8dBCcJBD7dRAkSJ2MHo
Cw+3yg+vwUE5wnM0QYnDuAAIAABBvQgAAAApyMH4BY0EAmZBiUECSGNEJLhIweAETY2EAQQBAABBuQMA
AADrJ0Epw0EpwonQZsHoBU2NgQQCAABBvRAAAABmKcJmQYlRAkG5CAAAAESJy70BAAAASGPFQYH7////
AEmNNEB3Gkw55w+EhwIAAA+2B0HB4ghBweMISP/HQQnCD7cORInYwegLD7fRD6/CQTnCcxdBicO4AAgA
AAHtKdDB+AWNBAFmiQbrFkEpw0EpwonIZsHoBY1sLQFmKcFmiQ7/y3WRuAEAAABEicnT4CnFRAHtg3wk
yAMPj8IBAACDRCTIB7gDAAAAg/0ED0zFSItcJNhBuAEAAABImEjB4AdMjYwDYAMAALsGAAAASWPAQYH7
////AEmNNEF3Gkw55w+E0AEAAA+2B0HB4ghBweMISP/HQQnCD7cWRInYwegLD7fKD6/BQTnCcxhBicO4
AAgAAEUBwCnIwfgFjQQCZokG6xdBKcNBKcKJ0GbB6AVHjUQAAWYpwmaJFv/LdY9Bg+hAQYP4A0WJxg+O
DQEAAEGD5gFEicDR+EGDzgJBg/gNjXD/fyOJ8UiLXCTYSWPAQdPmSAHARInySI0UU0gpwkyNil4FAADr
UY1w+0GB+////wB3Gkw55w+EGQEAAA+2B0HB4ghBweMISP/HQQnCQdHrRQH2RTnacgdFKdpBg84B/851
x0yLTCTYQcHmBL4EAAAASYHBRAYAAEG9AQAAALsBAAAASGPDQYH7////AE2NBEF3Gkw55w+EuQAAAA+2
B0HB4ghBweMISP/HQQnCQQ+3EESJ2MHoCw+3yg+vwUE5wnMYQYnDuAAIAAAB2ynIwfgFjQQCZkGJAOsa
QSnDQSnCidBmwegFjVwbAUUJ7mYpwmZBiRBFAe3/znWIQf/GdECDxQJFOf53TUiLVCToRIn4RCnwRA+2
LAJEifhB/8f/zUSILAIPlcIxwEQ7fCTkD5LAhcJ100Q7fCTkD4JF9///QYH7////AHcWTDnnuAEAAAB0
I+sHuAEAAADrGkj/x4n4K0Qk+EiLTCTwSItcJDiJAUSJOzHAW11BXEFdQV5BX0iLdfhIi30Qi0sESAHO
ixNIAdfJ6wJXXllIifBIKchaSCnXWYk5W13DaB4AAABa6MUAAABQUk9UX0VYRUN8UFJPVF9XUklURSBm
YWlsZWQuCgAKACRJbmZvOiBUaGlzIGZpbGUgaXMgcGFja2VkIHdpdGggdGhlIFVQWCBleGVjdXRhYmxl
IHBhY2tlciBodHRwOi8vdXB4LnNmLm5ldCAkCgAkSWQ6IFVQWCA0LjAyIENvcHlyaWdodCAoQykgMTk5
Ni0yMDIzIHRoZSBVUFggVGVhbS4gQWxsIFJpZ2h0cyBSZXNlcnZlZC4gJAoAkJCQag5aV17rAV5qAl9q
AVgPBWp/X2o8WA8FXyn2agJYDwWFwHjcUEiNtw8AAACtg+D+QYnGVluLFkiNjfX///9EizlMKflFKfdJ
Ac5fUlBXUU0pyUGDyP9qIkFaUl5qA1op/2oJWA8FSIlEJBBQWlNerVBIieFJidWtUK1BkEiJ917/1VlI
i3QkGEiLfCQQagVaagpYDwVB/+Vd6Hr///8vcHJvYy9zZWxmL2V4ZQAAAQAA7wsAAM4HAAAOSQQAGgMA
dBJ8Ggg2Ct9V9xgLKdkVSgc8lNrznlW1S45V2wl+X5UE/Md+tlQh0J2Q78Q0UpLEkvMkEVOMvrWYHeWK
wfCWH8VCvgC1J42rmOBud3GA7U8RabBaL9g6qcTHce3S8gKIFvfSA/cKOO+HXIuNUdCDmrOa8ymHgcDo
Y340fNMBlzyOpUahlOIUj3wqfUmOmu0vq47s0wfaO5P0RssjvGN4xBPwg7YYM5aJICKBEs+R93MkFN6K
Kj6VTMAsaSz4iVWXIu4K7rTy7/Wp7aArygughxW4PhrKLtAeCykomF+nXLyw9jIiwGuT7gfvLDfIxJ91
u/oQDEtq2B2Jg2GXeJRyiyj1uhTWkU58jq6F3M7XLUwNobzhFMZ2odgA0cu00VTvaIdI9tLd62JQVDv+
bEq/vBnLuDPrSzAYp4T7MQGqS5VBulBhryaxzRo3OU5npumW9RrgqWXV0NudUk/AsMGz59quhLszskP+
uQKQ9usm/Dybh5NBaRpmBK/whjPXuPeasCqosawPQMl3O/rl8wvSDQbbbJ1QE4lOesdTtKiSjceNpXMM
0cRwi4wzUUkJYEGz+FdM1lNFH/ddg8T5Ntt8qJa865ElSoT8BG0dd458cE1irdpSiKZmploA22mw245a
GY5uyWZ4rpZz9T9Pf0F3GosTDWiOFewCXnj+E83GqhKw7k7sP3IGYiyGGCb0cY8UPZCR///kvVH/+1+i
/sHIJejQHJtQ/hvfxW75xK+QIsjghCJPWJQM73F0SipRjCydGR8G2HCjXKQoc+9Z8bIIecaVO4YpijXy
3DrwYudwDktgQbRfds+sZf9Djx9ThozAFWrYn+ZmED9pwWChkQbKsT++Cv8vdij6iguajUzjRCv5y4hG
uPhTYsc2S3MSmkOGpyfu1a9XwLY/ZHiAm8fFbUR6MfdKXwA/8sAU1mmPhE04OGxSsHLDV77RgxvSDue+
rnrux8Zv6C67+nPck9oYYFh+fMhVrxD4r1wt+KAIB6M8GJVMVKmw+p3DzIOdyMffmqIBB85egNwWV6ok
zn7wfWb2MyvNMOjQ6zm5JYZQ7SFihQeOmTmuYXLep1Y4ootMzk5cdaGeVbKqVdFTkodVQ6cWElGzfIwM
4rHT9FvYnjpRX+SXPO9v5qJ4trr97K0cb4/GKdak6xt1TJWgtbchLe9hwTIkleznYFed0xE8sWIvLhVu
Yzlh3Pmf8pKGXxHpjBD7nItCfJtXEU44JigeMtfOKMuabQ0JXGnw7+jb3EIsYglZNgyLI5Dnq/49+oVP
rbYKxnIjKWXnxEwehTGRF+4+WV/lq1G81IJFZ9WUrK1maDJxF4YHWvbFN7z8METGgMITIbw6HYCSsjdD
FrKX8StYFrnB+F4sBbzkJj39nU6ELR5FQLIq+oGCY7XtqZuiYmPttuNz33+EbrVJxVFf9DAF8aEt2ID6
JXw5pzZb+YdkVl//Fk8t389P2h/inlKntamGTwaZ87fEi7+oJMmLxZsBSOtiztMxUGioSbuKcoxwm5w0
glzyCS1q4yDMazPcbfhNZYiOAlBXIc782gsmBXEW+7FldrN3Aay/+HhGqMKWlxVrJ+/S3Z/jmU0XC7Pu
O3Pl0nXGihButJ9RHZxVLZIbAYloM42FJGy6JCzHgAiU7+91p505cKnuZCiASNpgMuFBZ/LBuRL0iz2K
yc3znZFuUcq1XvxEdJKHvPuxMwrlVMasLJet50rdt3EJCvc02OMWUaITg6Ft+oBs6o9Z+Nzryr8ILu7U
fUUm74lcKhcHZfLrf95IF0wGtS/NuBXmoiUgvcdKT+O9xcF1qpLCWWGZ9/xNvzQMpTYYYN6HpuoABn9k
BjLdrzca2NvHt7cMXc6eKc9C4Z63VrKb79vxvDAKhyT1AmGLTNLpvVLV3yxO0cgGl/DnIteJhZ2s37Ko
ReDkoXQl/kT6EiXpj7N2Zf6ueJOpiuQGGPH6+8EK9lYA7hTXW/mw96pMXS5Ukcl7i0bddV1a2wAtxgQU
48UsbUg7oSgCQDxsmpt8Ke6WJCi+14qpfPMGd6h74A/msBUzct7bWqlgLRgGBK/7N7tI/KmpKfUZbjLF
Ai3C5GT6X8sBzI2C3YG0K72Cg4syBi80tB1qCVxhvumU8kSAN5CuNty70VhezdDnRwZlMug5emzmKJ/A
Q76G/W9ipGhW7azivTBOQfpmNF42IXAkagjH0yX7a1TArVr7eYhFUe3ZHI68WnBg25k4mQ0xDsewi/pN
FJngxe42e3rX2OtZ6kb9d3nhATthnxOJhaWTnsXjTJQmPMm5tiLRkEk7wyVuwP282WGG7Q0gdlrpA8td
B0qZ/7wm0dQkdT6HR6sAL3P3+tGrS4vpVA0/EqzpsqlpKGlFB3vGIOT15WfQK+CnVyf9yvPeqJMh3Fix
4Nm3izs06j5pJNxh6ZvCKcroz6AyDTExBCG+S5E9NqXJvd1CDNcDNwcpmuR7YxW8YlTqHG293EceWZlu
uET3L4qFcIUSAUHixGJZJbOY7t1mFa2gnPwGPMo51tubcLmdy70wop1+SHs3zxYg321mUUTJHgctLnMT
ViwYxxgOfQVaZCflcEf6stOdezftGM32l6+bHPF729YFFwTLkImZJAT11T/0JDZIImCpSfySo3al8rPj
xrChwrjLELIgNe6nCcVjABAOAAAcAAAADgAAABoDAABv/f//o7f/Rz5IFXI5YVG4kijma1mNkAD6DgAA
HAAAAA4AAAAaAwAAb/3//6O3/0c+SBVyOWFRuJIo5qNSt0S22AAAAAkAAAAOAAAAGgMAAG+IQdgA0AgA
AAICAAAOAAAAGgMAI5DsdCAVOzfiCDZG/zcyDuEeGQl1yspfUB3N7v15vrBcabGfaOdeITYPUyQNNbso
8dgGS4MZq3A72hGg3Hx0UvH6PXdGRMPYccHnAXD/RmS4q6dQ04bGfZPO5uhrd/J00GFbCHYR4hOG3PKi
vFKA6Bf+Z2i29iocEVtE6c8mP3bKvBD2i5j7SkxxTj6i8C6D+tovxPBEFAs49Z7+oODa0/b78yKms6Rs
XvXdxR+THR9m4mV9ORR+uVtPtAbBMf/iyEubNcaMgj1k3kvvtiSe93VxwiPjXytVzEIAFY/JrW8uFJgN
/0RlCCP5U//h5cvWVx73n4EW+kKWbpwh3I9Hafkv5hf2aTWWVyWtrT/7uZaL7wSLQW/rODRYjL/mAqSD
z5CyPjg6dSKi6m4V0abSE0Yvz/mu02nENL6Ef64c1NC+8VVHiqBm6ISY2ZF2HfL+hhrwYiVkpmb06/EH
hA2rUAGVpMqF3aWr9rEZgx9PfWAi55IYrWxNbmFVc1e9bLa6CykDun66qSeAy8MM3E2C7Cl4Z97tcPMU
7QVWC5ZmzqnJvkLEYYTwxIZG655+Jh+icjX/IwFylh2HkhAhZod0JSXwmpZaL4bF22/peAS1zcjhL1HX
L8GPZIdfaxzBeupABDmT7VAsNswZHgH4sCi8g6XQQMinrcYss51e3VQNIAAAAABVUFghAAAAAABVUFgh
DhYOChNcJSL4cwuR0AgAAAICAADw2AAASQQACPQAAAA=
";
0